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Abstract

Let w C R™ be a bounded domain with Lipschitz boundary. For € > 0 and
n € N consider the infinite cone

Q. = {(21,2") € (0,00) x R" : &’ € exyw} C R}

and the operator QY acting as the Laplacian u — —Au on . with the
Robin boundary condition d,u = au at d€)., where 0, is the outward normal
derivative and o > 0. We look at the dependence of the eigenvalues of Q¢ on
the parameter e: this problem was previously addressed for n = 1 only (in
that case, the only admissible w are finite intervals). In the present work we
consider arbitrary dimensions n > 2 and arbitrarily shaped “cross-sections”
w and look at the spectral asymptotics as € becomes small, i.e. as the cone
becomes “sharp” and collapses to a half-line. It turns out that the main
term of the asymptotics of individual eigenvalues is determined by the single
geometric quantity
Nw — Voln_law.
Vol,,w

More precisely, for any fixed j € N and « > 0 the jth eigenvalue E;(Q2) of
QY exists for all sufficiently small ¢ > 0 and satisfies

N2 2 1
E;(Q%Y) = — = o= 0r.
i(Q2) (2j+n—2)282+ (E) ase=

The paper also covers some aspects of Sobolev spaces on infinite cones, which
can be of independent interest.
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1 Introduction

Let w C R”™ be a bounded domain (connected open set) with Lipschitz boundary.
For € > 0 consider the open set

Q. = {(21,7') € (0,00) x R" : 2 € emw} C R™.

Geometrically, the set . is an infinite cone in R"*! such that the intersection of .
with the hyperplane x; = a gives the set caw. We are interested in some spectral
properties of a Robin Laplacian on (). as € becomes small, i.e. when the cone
becomes “sharp” and collapses to the half-line (0,00) x {0}. Namely, for o > 0
denote by Q% the self-adjoint operator in L?(€2.) generated by the closed, densely
defined, symmetric bilinear form

& (u,u) = / |Vul? do — a/ u? do, D(q¢¥) = H'(SL),
Q. 09
where do stands for the n-dimensional Hausdorff measure. The semiboundedness
and the closedness are not completely obvious as (). is unbounded and may have a
non-Lipschitz singularity at the origin: we discuss these aspects in detail in Subsec-
tion 2.5 below. Informally, the operator Q¢ can be viewed as the positive Laplacian,
u — —Auwu, with the Robin boundary condition d,u = au, where 0, is the outward
normal derivative; we refer to [3,9,10] for a discussion of various aspects related to
the precise description of the operator domain. Such operators are often referred to
as Robin Laplacians with negative parameters [6] due to the negative contribution
of the boundary term in the bilinear form. The cone (). is invariant with respect
to the dilations x — tx for any ¢ > 0, and standard arguments show the unitary
equivalence Q% ~ a*Q!. Hence, it will be convenient to consider & = 1 only and to
study the operator and the form

Qs = i7 s ‘= qgl~

For a review of spectral problems with Robin boundary conditions we refer to [6].
In particular, the eigenvalues of Robin Laplacians on infinite cones play a central
role in the strong coupling asymptotics of Robin eigenvalues on general domains.
Namely, if €2 is an open set of some large class and 7% is the Robin Laplacian on
Q) defined as the operator associated with the symmetric bilinear form

tQ’O‘(u,u):/ﬂ|Vu|2dx—oz/aQu2 do, ue H'(Q),

then the lower edge A;(T%?) of the spectrum of T satisfies

Ay (T = o? ig})fQ Ay (T 4+ 0(a?)  as a — +o0,

where TV=1 is the Robin Laplacian on the infinite tangent cone U, at z € 9Q. We
refer to [5,24] for technical details and precise definitions and to [13-16,19,28] for
a more precise eigenvalue analysis under more specific regularity assumptions. The
function a +— Ay (T*) plays a role in the study of some non-linear equations as
discussed in [23]. Eigenvalues and eigenfunctions of sharp cones can be used to
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produce counterexamples to spectral gap estimates [21]. In addition, such operators
attract some attention as examples of geometric “long-range” configurations produc-
ing an infinite discrete spectrum [4,8,27]. Let us summarize the available spectral
information for Q..

The essential spectrum of (). depends in a non-trivial way on w and . If w
has smooth boundary, then in virtue of [27, Thm. 1] the essential spectrum of Q).
is [—1,+00), as €. is smooth outside the origin. For non-smooth w the essential
spectrum is determined through an iterative procedure and can look differently: see
the detailed discussion in [5].

If w is the unit ball centered at the origin of R™, then (). is a round cone whose
lateral surface forms the constant angle 6 := arctan e with the central axis, and the
bottom of the spectrum of ). is the eigenvalue

1 14¢?
sin? g2

El(Qe) = (1)

with eigenfunction ¢ (x,2") = exp(—x;/sinf). In fact, only n = 1 and n = 2 were
considered explicitly, see e.g. [24, Lem. 2.6] and [18, Prop. 4.2], but the constructions
literally hold for arbitrary dimensions n.

The case n = 1 (€ is an infinite planar sector) was studied in detail in [20].
The only admissible sets w are finite intervals, so without loss of generality take
w:= (—1,1). In [20] it was shown that the discrete spectrum of (). is always finite,
but the number of eigenvalues grows unboundedly as € becomes small, and for each
fixed j € N (we use the convention 0 ¢ N) the jth eigenvalue E;(Q).) behaves as

1
E;(Q.) = N +0(1) ase — 07, (2)
Some explicit formulas for eigenpairs of (). in this particular case were obtained
in [25], but it is unclear if the constructed family exhausts the whole discrete spec-
trum.

If n > 2, the discrete spectrum of (). may be infinite. For example, if n =
2 and w is simply connected with smooth boundary, then the infiniteness of the
discrete spectrum follows by [27, Cor. 8], as the complement of €2, is not a convex
set (similar arguments apply in higher dimensions: we refer to [27] for details). On
the other hand, for polyhedral w the discrete spectrum can be finite. For example,
if one chooses w in such a way that §2; is an isometric copy of (0,00)"!, then an
easy analysis based on the separation of variables method shows that the discrete
spectrum of ); consists of a single eigenvalue —(n+1). For n = 2 and smooth w, the
accumulation rate of eigenvalues at the bottom of essential spectrum was studied
in [4]. Furthermore, in [18] it was shown that round infinite cones maximize the first
eigenvalue among all cones with the same perimeter of the spherical cross-section.
Various two-sided estimates for the bottom of the spectrum were obtained in [24].
In particular, it was shown that the lowest eigenvalue can be computed explicitly if
the spherical cross-section of €, is a spherical polygon admitting an inscribed circle.

In the present work we complement the above results by computing the asymp-
totics of individual eigenvalues of (). for small € in arbitrary dimensions and arbitrary
cross-sections w. It turns out that the main term in the asymptotics depends on a
single geometric constant N, given in (3) and, hence, it is rather insensitive to the
regularity of w. Our result reads as follows:



Theorem 1. Let j € N, then Q). has at least j discrete eigenvalues below the bottom
of the essential spectrum for all sufficiently small ¢ > 0, and its jth eigenvalue

E;(Q.) satisfies
N2
(27 +n—2)%e?

1 VOln_l Ow
o= 0t N, somotOW g
* (5) awe=ls Vol w (3)

Ej (Qa) ==

For n =1 and w = (—1,1) one has N,, = 1, and the result follows directly from
(2), and all other intervals w are easily included by applying suitable reparametriza-
tions. Hence, for the rest of the text we explicitly assume n > 2. Remark that if w
is a unit ball centered at the origin, then one has N, = n, and the exact formula
(1) has the form (3) with j = 1 and a more accurate remainder estimate. Based on
these observations one may expect that the remainder estimate in (3) is not optimal.
We further remark that if the volume Vol, w or the surface area Vol,_; dw is fixed,
then the quantity N, is minimized by the ball due to the classical isoperimetric
inequality. Hence, the sharp cones (). whose cross-section w are balls maximize the
main term in (3) among all sharp cones with cross-sections of the same volume or
surface area.

Our proof is variational and based on the min-max principle, and its main in-
gredient is a kind of asymptotic separation of the variables x; and 2/, which is quite
similar to [20], but the analysis in the a’-direction is much more involved and uses
some coordinate transforms similar to [22]. Various proof steps are explained in
greater detail in Subsection 2.6 below. We remark that in Subsection 2.2 and 2.5
we prove some results on Sobolev spaces on (). (which is unbounded and may be
non-Lipschitz) that are needed for the spectral analysis: this part of the text may
be of its own interest.

2 Preparations for the proof

2.1 Min-max principle

If T is a self-adjoint operator on an infinite-dimensional Hilbert space H, we denote
by E;(T) its jth eigenvalue (when enumerated in the non-decreasing order and
counted according to the multiplicities), if it exists. All operators we consider are
real (i.e. map real-valued functions to real-valued functions), and we prefer to work
with real Hilbert spaces in order to have shorter expressions. The spectrum and the
essential spectrum of 7" will be denoted by specT" and spec,, 1" respectively.

Let t be the bilinear form for 7', with domain D(t), and let D C D(t) be any dense
subset (with respect to the scalar product induced by t). Consider the following
“variational eigenvalues”

t
A(T) = ‘}rcl% sup<<u’;t)
dimV=; uSy \ A

Y

which are independent of the choice of D. One easily sees that j — A;(T") is non-
decreasing. Furthermore, if one denotes ¥ := infspec. T for spec, T # 0 and
Y := 400 otherwise, then it is known [30, Section XIII.1] that only two cases are
possible:



o For all j € N there holds A;(T) < X. Then the spectrum of 7" in (—o0, X))
consists of infinitely many discrete eigenvalues E;(T") = A;(T) with j € N.

« For some N € NU {0} there holds Ay41(7") > X, while A;(T") < X for all j <
N. Then T has exactly N discrete eigenvalues in (—oo, X) and E;(T) = A;(T)
for j € {1,..., N}, while A;(T) =X for all j > N + 1.

In all cases there holds lim;_,., A;(T") = %, and if for some j € N one has A;(T") < X,
then E;(T) = A;(T). In particular, if for some j € N one has the strict inequality
A](T> < Aj+1(T), then EJ(T) = AJ(T)

2.2 Density in Sobolev spaces on cones

We prefer to discuss in detail some properties of Sobolev spaces on €2.. In fact, par-
ticular attention should be paid to such aspects, as €2. is unbounded and, in general,
not with Lipschitz boundary, and it does not satisfy the standard assumptions for
trace theorems and other important assertions discussed in most books.

By do and dr we will denote the integration with respect to the n- and (n—1)-
dimensional Hausdorff measures, respectively.

For an open set © C R™ and k € N the k-th Sobolev space H*() is defined as

H* Q) == {u € L*(Q) : 0*u € L*(Q) for all |a] < k}

with all derivatives taken in the sense of distributions, and it is a Hilbert space with
respect to the scalar product

<U,U>Hk(g) = Z <8au,8av)Lz(Q).

|| <k

By C*°(2) one denotes the set of functions defined on §2 that can be extended to
functions in C2°(R™).

One says that an open set  C R™ has C* (respectively Lipschitz) boundary, if
for any p € 0 there exist Cartesian coordinates (y1, ..., ¥n) centered at p, a C* (re-
spectively Lipschitz) function h of m — 1 variables, defined on an open neighborhood
of 0 in R™! and with h(0,...,0) =0, and € > 0 such that

QN B.(p) = {y = W1, Ym) € B(0) : Y < h(y1, ... 7ym—1)}-

Most assertions used in the theory of Sobolev spaces (some density and extension
results, trace theorems) are usually formulated for bounded open sets with Lipschitz
boundaries. On the other hand, the cone Q. has in general not even a C° boundary:
for example, if n = 2 and w is an annulus, w = {(z1,72) : 1 < 2% + 23 < 4}, then
one easily sees that (). cannot be represented as one of the sides of the graph of a
continuous function near the vertex 0. Moreover, further common assumptions used
in the theory of Sobolev spaces (e.g. the segment condition or the cone condition)
fail as well.
We collect some known facts on H*(Q) in the following proposition:



Proposition 2. (A) The space
H! (Q):= {u € H'(Q) :u e C™(Q) N L>(Q), suppu is bounded}
is dense in H'(Q). (Remark that there are no additional assumptions on €).)
(B) If Q has C° boundary, then C*(Q) is dense in H*(Q) for any k € N.

(C) If Q is bounded and has Lipschitz boundary, then:

(C.1) for any k € N, any function in H*(Q)) can be extended to a function in
HE(R™).
(C.2) the linear map C®(Q) 3 u — ulog € L*(9Q) uniquely extends by conti-

nuity to a bounded linear map o : H'(Q) — L?(9Q). Moreover, for any
e > 0 there exists C. > 0 such that

/ (You)*do, 1 < 6/ |Vul*dz + C’a/ u? dx
) Q Q

for all w € HY(Q), where 0,1 is the (m — 1)-dimensional Hausdorff
measure.

We refer to [26, Theorem in Sec. 1.4.3] for (A), to [26, Theorem 1 in Sec. 1.4.2]
for (B), to [1, Thm. 5.2.4] for (C.1) and to [12, Theorem 1.5.1.10] for (C.2). Remark
that one usually writes simply u instead of you in the integrals over the boundary.

Now we pass to the discussion of Sobolev spaces on the infinite cones ).. We
start with several preparation steps.

Lemma 3. Let —0o < a < b < oo, then the cylinder Q := (a,b) x w C R"™ has
Lipschitz boundary.

Proof. Let p € 012, then the following cases are possible.
Case 1: p = (d/,p') with @’ € (a,b) and p’ € Ow. As w has Lipschitz boundary,

there exists Cartesian coordinates (y1,...,¥,) in R™ centered at p’ and a Lipschitz
function h with h(0) = 0 such that w coincides with {y : v, < h(y1,...,Yn-1)}
near p’. Denote z := x; — d/, then (2,y1,...,y,) are Cartesian coordinates in R™*!

centered at p, and 2 near p coincides with {(z,y) : yn < H(z,91,...,Yn—1)} for the
function H(z,y1,...,Yn—1) := h(y1,...,Yn_1), which is obviously Lipschitz.

Case 2a: p = (a,2’) with 2’ € w, then Q near p coincides with {(z,y) : z < 0},
where y = (y1, ..., yn) are arbitrary Cartesian coordinates in R"™ centered at 2’ and
z :=a — z;: remark that (z,yy,...,9,) are Cartesian coordinates in R"*! centered
at p, and the zero function is obviously Lipschitz. Case 2b: p = (b, 2’) with 2/ € w
is treated analogously.

Case 3a: p = (a,p') with p’ € Ow (the most difficult one). As w has Lips-
chitz boundary, there exist Cartesian coordinates (yi,...,¥,) in R™ centered at p’
and a Lipschitz function h with h(0) = 0 such that w coincides with {y : y, <
R(y1,...,Yn—1)} near p’. Remark that € near p is then determined by the two
inequalities

r1>a, Yo <h(yr, .. Yn_1). (4)



In order to bring these conditions into the required form we pick § € (0,%) and

apply a rotation by the angle # around p in the (1, y,)-plane. Namely, consider the
Cartesian coordinates (z, ¥, ..., Y1, w) with the previous y,...,y,_1 and

T —a cosf —sin 6
=z| . +w .
Yn sin 6 cos 6
Clearly, the new coordinates are centered at p, and the above inequalities (4) deter-

mining 2 near p take the form

cosf sin 6 1

w < h(ylv"'ayn—1)7 (5)

—_— w z
sin@’ cosf cos 6
which can be rewritten as

cos sin 0 1

M)

< H ey Yn—1) = I »
w (2,915, Yn-1) mm{sinez cosez cos 0/

The function H is Lipschitz (as it is the minimum of two Lipschitz functions), hence,
one has a required representation of €2 near p. The case 3b: p = (b,p’) with p’ € Jw
is considered analogously. O

Lemma 4. Let —0o < a < b < oo and Q := (a,b) x w C R"*. Let [¢,d] C (a,b)
and u € H'(Q) such that u(zy,2’) = 0 for xy & [c,]. Let 0 < § < min{c—a,b— '},
then for any e > 0 there exists ¢ € CX(R™) such that ||u — ¢||gr) < € and
o(x1,2") =0 for all xy ¢ [c — 9§, + 0].

Proof. By Lemma 3 and Proposition 2(C.1) the function u can be extended to a

function o' € H'(R™™!). Choose x € C°(R) such that x(s) = 1 for s € [¢,¢] and

supp x € [c — %+ %}, and, in addition, choose xo € C(R™) with xo = 1 on w.

Then the function v : (xy,2") — x(x1)x0(2" )V (21, 2") belongs to H*(R™), is an

extension of u, has compact support, and v(zy,z") = 0 for all z; ¢ [c — g, d + g]
Let p € C°(R™) with

ply) =0for jy| =1, [ ply)yay=1,
Rn+1

and for ¢ > 0 consider the functions p, : x + t~ ™+ p(t~12). Then v, := v * p, €
C2°(R™1), where * denotes the convolution product, and ||v; — v]| g1 gn+1y — 0 for
t — 0%. Hence, there exists some ¢y > 0 such that |[v; — v|[g1@n+1) < € for all
t e (0, to).

Furthermore, the definition of the convolution product implies the inclusion
suppv; C suppv + B:(0). In particular, if ¢t < %, then one has v(x1,2") = 0
for all 1 ¢ [c— 0, +6]. Now pick any 0 < ¢t < min {to, g} and denote ¢ := v, then

le = ullmr@) = llve = vl @) < llve = vllm@eny <e,
so ¢ has all the required properties. O]

For an open interval I C (0,00) we denote
C®(Q) = {u € C*(Q.) : 3[b,c] C I such that u(z) = 0 for z; ¢ [b, c]} (6)
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Proposition 5. The subspace Cg (Q.) is dense in H*(Q.).

Proof. First remark that H! (£.) is dense in H'(£2.) by Proposition 2(A). So we
need to show that any function from H! (£2.) can be approximated by functions
from CF ) (€2.) in the H'-norm.

Let v € HL (Q.), then there exists some ¢ € (0,00) such that v(z;,2’) = 0 for
x> c¢. Let x : R = R be a C*-function with 0 < x <1, x(s) =0 for s < 3, and

X(s) =1 for s > 1. For 6 > 0 consider the functions
T
vs 2 (z1,2") — X(f)v(xl,x').

We have

2 Z1\2 N2 / N2 .. 0—0F
Vg — v = 1—x(—=) |v(xy,2') da < v(zy,2)*de — 0.
Jos = olaoy = [, [1=x(5) [o@nade< [ o(ena)

Furthermore,

Ovs(xy, o) = ;;{(?)v(xl, ')+ X(%)(?lv(xl, '),

djus(xq,2’) = X(%)@ﬂ)(ml,x') for j > 2.

For every j > 2 one obtains

T1\2 2
950 = 00l = [ [t =x(5) ] [oso(ar,a)[ da
2
< ‘8]-11(361,:1:’) dz 2% 0.
QEQ{11<5}
In addition, using (z + y)* < 2(2? + y?) we estimate
I’l 2 2
10105 — Aol < 2/98 1= x(5)[[rw(an,a)| do
2 T1\2
+ 5 f X (F) ol e g

2 2
< Ohv(zy, )| dz + = ||X'||A v2/ dz.
< /MM}\ o, )| s Il f,

The first summand on the right-hand converges to 0 as § — 07 as d,v € L*(€2.).
We further note that

5n+1

5 5
/ do = / / dz’ dzy = £" Vol, w/ 2} dzy =" Vol w ——,
QeN{z1<6} 0 Jeriw 0 n+1

and the second summand on the right-hand side of (7) is estimated from above by
22 e IX (|2 Nlv]|%, Vol wd™ !, which converges to 0 for § — 0 due to n > 2. We
have proved that vs converges to v in H'(£2.) as § — 07. Remark that vs(z;,2’) =0

for x1 ¢ [0/2, |, therefore, the above constructions show that the subspace

D= {ue H'(Q.)NC™(Q) N L) :
3[b, ] C (0,00) such that u(zy,2") =0 for z; ¢ [b, c}},



is dense in H'(€2.). Now it remains to check that each function for D can be
approximated by functions from Cf () in HY(€.).

Let w € D and [b,¢] C (0,00) such that u(zy,2") = 0 for x; ¢ [b,c]. The
map X : (0,00) x R" 3 (s,t) = (s,est) € (0,00) x R" is a diffeomorphism with
X((O, 00) xw) = Q.. Pick an arbitrary 6 € (0, %) and denote ' := (b—24, c+20) xw,
then the function ux := u o X belongs to H'(Q).

Let p > 0, then by Lemma 4 one can find ¢4 € C°(R™™) with

lux — xllmr@y < p,  @x(xr,2") =0forall 1 ¢ [b—d,¢c+ 4]
Then the functions

SO“ : Rn+1 ST SO‘L)L( (X_l(x))a T > 07
0, otherwise

belong to C°(R™™) and ¢*(zy,2’) = 0 for all z; & [b— 6, ¢+ ¢], i.e. the restriction
of # to Q. belongs to CfF ) ().

The supports of u and ¢* are contained in [b—d, c+d] x R™ and all derivatives of X
and X! are uniformly bounded on the compact sets €’ and Q.N{z; € [b—26, c+26]}

respectively. Therefore, one can find some C' > 0 such that

|u — 90“||H1(Qs) = [ju— <PM||Hl(ng{zle(b—Q(s,cwa)}) < Cllux — SO'UXHHl(Q’)

for all 4 > 0. As u can be taken arbitrarily small, this concludes the proof. O

2.3 Robin Laplacian on w

Given r € R denote by B, the self-adjoint operator in L?(w) generated by the closed
symmetric bilinear form

b(f )= [ IVF@F dt=r [ (0 ). f € H'(w) (8)

Ow

remark that b, is semibounded from below due to Proposition 2. Informally, the
operator B, is the Laplacian f — —Af on w with the Robin boundary condition
0,f = rf, with 0, being the outward normal derivative. We will summarize some
important spectral properties of B, as follows.

Lemma 6. The following assertions hold true:

(a) For any r € R the first eigenvalue E1(B,) is simple, and the corresponding
eigenfunction 1, can be chosen strictly positive with ||\, | 2y = 1.

(b) The mappings R > r+ Ei(B,) ER and R 3 r +— ), € L*(w) are C*.

(c) There exists p € L>°(0,00) such that Ey(B,) = —N,r + r%p(r) for all v > 0
and N, as defined in (3).

(d) Let EY > 0 be the second eigenvalue of the Neumann Laplacian on w, then
hmr_m EQ(BT) = Eév



(e) For any ro > 0 there exists K > 0 such that

/

Proof. Part (a) is proved for even more general Robin problems in [2, Sec. 4.2]. Both
(b) and (d) follow from the fact that the operators B, form a type (B) analytic family
with respect to r, see [17, Ch. 7, §4], and (e) is a direct consequence of (b). To prove
(c) we remark first that there exists C' > 0 such that

8,,¢T(y)‘2 dy < K for allr € (0,70). 9)

~Cr* < Ei(B,) <0asr — +oo; (10)

the lower bound is proved e.g. in [22, Corol. 2.2], and the upper bound follows from
b-(1,1) < 0 (which holds for all » > 0) by the min-max principle. Furthermore, by
Eq. (4.16) in [6] one has

d

BB =-N,,

dr 1(Br) r=0
and it follows that E1(B,) = —N,r + O(r?) as r — 0*. By combining this asymp-
totics with (10) we arrive at the representation in (c). O

2.4 One-dimensional model operators

Given A > 0 we consider the symmetric differential operator in L?(0, 00) given by

2_92n N,
(0 S . 11
20003 10 =4 (S - T (1)
and denote by A, its Friedrichs extension. Remark that n? — 2n > 0 due to n > 2.
In [11, Chapter 8.3] the spectrum of Ay was fully determined': the essential
spectrum is [0, +00) and the negative eigenvalues are simple and are explicitly given
by
E;(A) N? .
E:(Ay) =~ =— = N, A>0. 12
J( )\) 22 (2]—1—71—2)2/\2’ Jen, ( )
In what follows we will need to work with truncated versions of A,. Namely, for
b > 0 we denote by M, ; and M, the Friedrichs extensions in L*(0,b) and L?(b, c0)
of the operators C2°(0,b) > f +— Ay,f and C®(b,00) > f — A, f respectively.
Remark that by construction the form domain of M, is contained in H}(0,b),
which implies that M) ; has compact resolvent. We need to relate the eigenvalues of
M), to those of Ay. As the bilinear form of A, extends that of M), one has, due
to the min-max principle,

Ej(M)\7b) > EJ(A)\) for any b > O, A > 0, j € N. (13)
Let us now obtain an asymptotic upper bound for E;(M, ;).
Lemma 7. Let b > 0 and j € N. Then there exist K > 0 and g > 0 such that

E;j(M.y) < Ej(A.) + K for all € € (0, ).
For n = 2 see p. 312 and for n > 3 see p. 294 in [11].
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Proof. The proof is quite standard and uses a so-called IMS partition of unity [7,
Sec. 3.1]. Let x; and xo be two smooth functions on R with 0 < xq,x2 < 1,
such that x +x3 = 1, xi(s) = 0 for s > 3b, xo(s) = 0 for s < $b. We set
K = ||Xi 1% + Ix5]l% - An easy computation shows that for any f € C2°(0,00) there

holds
L7 (0GP + bl £ as

Loras = [ loayfas+ [T

> [T loasy s+ [ oen | ds = Ko,

which implies

(1AL gy + B 2000 = (s A:000D)
= (uf A-Laf)

o) T <X2f’ AE(XQf)>L2(O,oo)

2oy T <X2f’ AE(X2f>>L2(g,oo)'

Using the identity ||f||%2(0 00) = ||X1f||%2(0 b)+||X2f||iQ(b ) and the obvious inclusions
) ) Z’OO
x1f € C2(0,b), xof € C"O(g, 00), we apply the min-max principle as follows:

ALY + K| 1125
Ej(AE) +K = inf sup <f f> HfHL (0,00)

SCC(0,00) res ||f||L2 (0,00)
dimS=j =0
(0l A:000) gy + Ol A0eh)
 scdom 2 I/ 8
C 00
dim S=j ;iﬁ L2(0,00)
) (f A0 ) gy + Ol A00D) e (1)
= inf  sup
ScdlCmS(O;O) fiS ||X1f||L2 op T ||X2fHLz(b
| (Fo A i) oy + (P A o) s
> inf sup
SCOR(0,0)BCE(§,00) (f1,f2)€S 1fillZ2005 + ||f2||L2(b o)
dim S=j (f1,f2)#0

= Aj(ME,b@M&%) > min {A (M), mfspecM b}

For any j € N we have A;(M.,) = E;(M.;). At the same time, for any function
f€CX(2 00) one has

s P = [, 1P+ (”24;22” —NW) fﬂ s

ES
2_]Vw/oolde >
s

€ $:0)’

which gives the lower bound inf spec ME, b2 = e Due to (12) we conclude that if

J € N is fixed, then one can find some g5 > 0 such that for all € € (0,¢¢) there holds
E;(A:) + K < infspec M, ». Then (14) implies E;(A:) + K > Ej(Me,). O

11



2.5 Trace theorem on cones

We will need suitable coordinates on 0f).. Consider again the diffeomorphism
X :(0,00) x R" = (0,00) x R",  X(s,t) = (s,est), (s,t) = (8,t1,t0,...,tn),

then 09, = X((O, 00) X Gw) U{0}. Remark that {0} has zero n-dimensional Haus-
dorff measure and can be neglected in the integration over 0f2..

Lemma 8. For any ¢ > 0, any measurable v : Q. — R and u := v o X there holds

8"_1/00/ 3”_1‘u(s,t)‘d7(t) ds
0 Ow
< /asz lv| do < \/1+R2525”_1/ /a s"‘l’u(s,t)’dT(t) ds
£ 0 w

with R := sup,¢,, |t|.

Proof. As usual for the integration over hypersurfaces, it is sufficient to prove the
statement for functions supported in images of local charts, then it is extended to
general functions using a partition of unity.

Let U > z=(z1,...,2,) — ®(2) be a local chart on dw, then

O :(0,00) x U > (s,2) — (8,53@(2)) = X(s,gp(z)) € 0.

is a local chart on 0€.. If v|sq, is supported in the image of ®, then

/BQE |v|d<7:/0 /U‘v@)(s,z))‘ go(s,z)dzds, g :=/det(DPTDP).  (15)
We compute
L+ e%p(2)* e2sF(2)T
e2sF(z)  £25°Gy(z)
(p(2),000(2)).,
F(z) := : =
((2),0n10(2)),,

The matrix G, is invertible a.e. (as ¢ is a local chart), therefore, using well-known
formulas for the determinants of block matrices (see e.g. [32]) we obtain

(DOTD®)(s,2) = ( ) , Gy, =Dy Dy,

o(2)] = |e(2)|V:|o(2)|-

N |

9o (s, 2)? = det(DO' D®)
_ (1 +2p()? - <525F(z), (6232G¢(2))1523F(z)>> det (25°G(2) )
= 20020014 2l (1 - (T, Gole) Vel ) )| det Go(o).
Consider the function r : ¢~ |¢] on A, then
(V.Ie(2)], Gole) Valo(2)l) = IV 2(6(2)), Io(2)E = r2(4(2),

12



with V%7 being the tangential gradient of r along dw. Therefore,
ga(s,z) = " 71" 1+e2p(0(2))g,(2),  gp(2) 1= y/det Gy(2),
p = r2(1 — ]V‘%r\z) = TQ(]VRnr]2 — \V‘%MQ) =r?0,r|?

with 8, being the normal derivative. Due to |9,r| < 1 we have 0 < p < R? with R
from (26). By (15) we obtain

g1 /Ooo /U st ‘v(q)(s, z))‘gg,(z) dzds
< /{mg lv|do < V1 + R22e"! /OOO/Usnl )v(q)(s, z))‘g@(z) dzds. (16)

Using the definition of ® we obtain v(@(s, z)) = u(s, @(z)) and

/Ooo /U s ‘v(@(s, z))’gw(z) dzds = /OOO /U s" " u(s, 0(2))] gp(2) dz ds
= [T ] s tuts,nldre ds,

and the substitution into (16) gives the sought estimate.

The above computations are classical for the case of smooth dw. In our case dw
is only a Lipschitz manifold, but the formulas are still valid a.e.: we refer to [31] for
a detailed discussion. O

Recall that the subsets Cf ) (92.) were defined in (6). The restriction of each

function from Cé"doo)(QE) to 0f). is a continuous function with compact support,
hence it is square integrable.

Proposition 9. Let € > 0 be fized. The linear map
70 0 Cioe) () = LH(09),  You := ulaq.,

uniquely extends to a bounded linear map from H*(Q.) to L*(09Q.). Moreover, for
any 6 > 0 there exists Cs > 0 such that

H’YOUH%%aQE) < 5HVU||2L2(QE) + Ct;HUH%?(QE) Jor any u € HI(QE)'
Proof. 1t is sufficient to consider ¢ = 17(as general values of £ can be absorbed
by taking ew instead of w). As Cf,(£21) is dense in H'(Q,) by Proposition 5,

it is sufficient to show that for any 0 > 0 there exists Cs > 0 such that for any
u € CF ) (§21) there holds

/ u*do < (5/ ]Vu]2d33—|—05/ u® da. (17)
o0 (951 Q1

We use the spectral analysis of the operators B, from Subsection 2.3. By
Lemma 6 one can find a constant ¢ > 0 such that

/|Vv|2dt—7“/8 UszZ—(Nwr+cT2>/U2dt for all v € H'(w), 7> 0.

13



and the inequality can be rewritten as
/&U v?dr < i/w |Vol*dt + (N, + cr)/wv2 dt for all v € H'(w), r > 0. (18)
Recall that by Lemma 8 we have for any u € Cg ():
/BQ u?do < m/ooo 8”71/8 u(s, st)*dr(t) ds.
1 w

We are going to control the integral over dw using (18) with v : t — u(s, st) and
r = r(s), which gives

/a W2 do < VIt BRI + 1),
1951

n—1
= 19
I /o 05 /UJ|Vtu(s,5t)| dt ds, (19)

I = /Ooo st (Nw + cr(s)) / u(s, st)? dt ds.

w

Now we remark that
o) Sn+1
I = / /|(v ) (s, st)|2 dt ds
/ / ((Vu)(s,2')|* dz’ ds </ |Vu(s,x’)|2d:v'ds.

Taking r(s) := ps with a constant 1 > 0 to be chosen later we obtain
1 o /|2 / 1 2
L < —/ / |Vu(s,z')|"dz’ ds = —/ |Vu|*de.
HJo sw JY A
For the same choice of r(s) one has

I, = /oo YN, +cus)/u(s st)*dt ds

=N, / s" 1/ s, st)? dtds+cu/ / u(s, st)? dtds.

=:J1 =:Js

The second term is easy to evaluate:

ng/oo/ u(s,x')de’dS:/ u? dz.
0 sw (951

The term J; requires a bit more work. We rewrite
o N, n
J1 = / / ““f(s)*dsdt with the function f, : s+ s2u(s, st). (20)
w J0 S

For each fixed t one has f; € C2°(0, 00). Using the spectral analysis of Subsection 2.4
(consider the first eigenvalue of A/, with n = 2) we have

O

2772

N. N2 oo
a ft(s)2 dsZ—'u4 /0 ft(s)st,

14



which we rewrite as

2

/0 —ft )2ds < ~ / sy ds 4 10 /Oooft<s>2ds. (21)

We have

A (s,st)‘z.
Using
/OOO ns" tu(s, st)Osu(s, st) ds 2/ s"1o, ( (s, st) )ds

=3 (n — 1)/0OO s"2u(s, st)* ds

we arrive at

/ fi(s)*ds = {—Z(n—l)] /0003”2u(5,3t)2d8+/000

Using n > 2 one obtains

2
s"(0s (s,st)‘ ds.

n2 n

Z—E(n—l):%(n—Q(n—l)):%(Q—n)SO,

/0 ds</

We compute (with the same R := sup,,, |t| as above)

which gives

2 2
= |Op, u(s, st) +t - Vyu(s, st)‘ < 2|0, u(s, st)|* + 2’t - Vaul(s, st)‘

< 2|0, u(s, st)|* + 2R2‘Vx/u(s, st)‘2 < 2(1+ RH|(Vu)(s, st)|?,
which results in

/OO fl(s)*ds < 2(1+ R?) /°° S|(Vu) (s, st)[? ds.

0 0

The substitution into (21) gives

o N, 2(1 2) e N2 o
/ “Zf(s)*ds < HR)/ s"|(Vu)(s, st)|* ds + Al / s"u(s, st)? ds,
0o S W 0 4 Jo

and using (20) one obtains

2(14 R?) [ N2 oo
J, < 2R / / " |(Vu) (s, st)? Y / / s™u(s, st)? dt ds
% 0 w 4 0 w
2(1 2) oo N2 oo
= <~|—R>/ / |Vu(s,x’)|2dx'dt+%/ / u(s,2')? da’ ds
0 sw

1 %) puN?2
(+R/ |Vu \2dx—i— u? dz.
4 Joy

15



Using the above estimates for J; and J, one obtains:

2(1 + R? N?
I < H)/ |Vu|2dx+u(fw +c)/ u? de,
/.L Ql 4 Ql

and the substitution into (19) gives

2(1 + R? 1 N?
/ u2d0§\/1~|—R2(+)+/ |Vu|2dx+\/1+R2u<—“+c)/ u? da.
00, W o 4 Q
For any 6 > 0 one can take pu sufficiently large, such that the coefficient in front
of the first integral becomes smaller than ¢, and this proves the required inequality
(17). O

As an easy corollary we obtain that our spectral problem is well-posed:

Corollary 10. The bilinear form q. is semibounded from below and closed for any
e>0.

2.6 Scheme of the proof

We will mostly deal with a Robin Laplacian on a finite part of {2.. Pick some a > 0
(this value will remain fixed through the whole text), and denote

Vo=Q.N{z; <a} = {(:1:1,3:’) € (0,a) xR": 2’ € Ewlw} c R
OV =00 N{z1 <a} = {(:cl,x’) € (0,a) xR": 2’ € 5&:1&«)} c oV,
H((V.) := the closure of Cay () in H'Y(VZ).

Recall that Cf,)(§2) was defined in (6).

Let T. be the self-adjoint operator in L?(V,) associated with the symmetric bi-
linear form

¢ (u, ) :/V |Vu|2dx—/8v W? do, D(t.) = H\(V.), (22)

then 7. can be informally interpreted as the Laplacian in V. with the Robin boundary
condition d,u = u on JyV. and the Dirichlet boundary condition on the remaining
boundary 0V. \ dyV. (which corresponds to x; = a).

The main part of our analysis is dedicated to the eigenvalues of 7. (Section 3).
Using a suitable change of coordinates and the spectral analysis of B,., the study of
eigenvalues of T. with small ¢ is reduced to the truncated one-dimensional operators
M. , (with suitable ¢’ ~ ¢) from Subsection 2.4. The main result of this reduction
is given in Proposition 16. The analysis is in the spirit of the Born-Oppenheimer
approximation, see e.g. [29, Part 3], with M./, being an “effective operator”, and it
is essentially an adaptation of the constructions of the earlier paper [22] on Robin
eigenvalues in domains with peaks. We then show in Proposition 20 that the eigen-
values of (), are close to those of T, which finishes the proof of Theorem 1. In view
of Proposition 5 the variational eigenvalues of 7. are defined by

t(—: ) raY .

Aj(T;) = inf sup (u72u)’ Dy(te) :== Ci(S), j €N, (23)
scBy) a8 ullr ’
dim S=j wu#0 €

16



3 Spectral analysis near the vertex

In this section we study A;(7%.) with small . The proof will be based on (23) and
on a kind of asymptotic separation of variables.

3.1 Change of variables

One observes that
Vo=X(IT), IMI=(0,a)xw, X(s,t)=_(s,est), (s,t)=(s,t1,te,...,t,) €Il
This induces the unitary transform (change of variables)
U:L*(V.) — L*(IL,e"s"ds dt), Uwu:=uo X. (24)
Consider the symmetric bi linear form p. in L*(I1,&"s" ds dt) given by
pe(u,u) ==t (U u, U u), D(p.) =UD(t,).
Due to the unitarity of & and Proposition 5, the subspace

Do(pe) :==U Dy(t.)
= {u € C®(M) : 3[b,c] C (0,a) such that u(s,t) =0 for s & [b, c]},

is a core of p., and by (23) one has

Aj(T;) = inf sup ];5(“’“) '
SChylpe) wes |l enan as an

(25)

Now we would like to obtain more convenient expressions for p.(u,u).

Lemma 11. Denote
R :=sup|t|. (26)

tew

For any v € Dy(t.) and u :=Uv € Dy(p.) there holds

a 1— 2.2
5”/ / {(1 — nRg) |0sul® + (nfe” + Re) |Vul?|s" dt ds
0 Jw

8282

a 1 2.2
< / Vo2 dz < 8”/ / {(1 + nRe) |0su|? + i (nR262 + Re) |V,ul?|s™ dt ds.
Ve 0 Jw E“S

Proof. A standard computation shows that for any u € Dy(p.) there holds
/ Vo> do = 6”/ /(Vu, G Vu)gn+1 8" dtds (27)
Ve 0 w
where G is the (n 4+ 1) x (n 4+ 1) matrix given by

-1
G = (DXT DX) " = <1+52|15|2 e2st )

e2stt 2521
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with DX being the Jacobi matrix of X and 1 being the n x n identity matrix. One
checks directly that G is a block matrix,

1 t2
G = § ith Cj,=¢°°% %
= tT O w jk — t.tk
s 372 lf ]%k’

We would like to estimate the term (Vu, G Vu)gn+1 from above and from below
using simpler expressions. One obtains

<VU, G VU)R?H—l \8 U’Q + ’V{UP

kl ],kl

Using the standard inequality 2|zy| < 2? 4+ y? and [t;] < |[t] < R we estimate

3tk ’

2 n
| St Oudyu
S k=1

0 R
< REZ (13 uf? + ] tkg“' ) — nRel0uf + 2 Vil

k 1

~ Z |3t u@tku|

2

1 n
72 Z tjtk 3tju3tku

J,k=1

:U

%)
o
i MS T

RQ
(101,ul® + 10y ul?) = =5 Vel

1

<
52
j

The substitution into (28) gives a two-sided estimate for (Vu, G Vu)gn+1, and the
substitution into (27) gives the claim. [

By applying Lemmas 11 and 8 to both summands of t. in (22) and by adjust-
ing various constants we obtain the following two-sided estimate written in a form
adapted for the subsequent analysis:

Proposition 12. There exist ¢ > 0 and €y > 0, with ceg < 1, both independent of
the choice of a, such that for any ¢ € (0,¢0) and any u € Dy(p.) there holds

p= (u, ) < pe(u,u) < pf(u, U)

pE(u,u) = (1=+ 05) /a/ |05ul? + |Vtu| dt ds

nl n12 d
1:‘:C€ //w 5

In particular, by (25) it follows that for each 7 € N and any € € (0,&q) there holds

— +
inf  sup p; (v, ) < Aj(T.) < inf sup p; (v, u) :
%Cm?g(ﬁ;) ues [l Z2(11,n5m as a) Sdfn?g(p;) ues [l Z2(11,n5m as ar)

18



3.2 Upper bound for the eigenvalues of 7.

We are going to compare the eigenvalues of 7. with those of the truncated one-
dimensional operators M, ,.

Lemma 13. There ezist ¢, ,eq > 0, with ceg < 1, such that for any j € N and any
e € (0,e0) there holds Aj(T.) < (14 ce) Ej(M(14cey2e,0) + €

Proof. Take first ¢ and ¢( as in Proposition 12. Define a unitary transform
VL) — L*(IL,e"s"ds dt), (Vu)(s,t) =e 252 u(s,t),

and consider the symmetric bilinear form 7 (u, u) := pZ(V u,Vu). One easily sees
that for any u € Dy(r) := V' Dy(p.) = Dy(p.) there holds

+ ¢ nu\? 2
ri(u,u) = (1+05)/ / <<8u 25) |Vtu| ) dtds
1+ce /o s /awu dr(t

The substitution u — Vu into the upper bound of Proposition 12 shows that

_l’_
A;(T.) < inf  sup LUQU)
ScDo(r;) ues HU’HLQ(H)
dim S=j u#0

Using the density, on the right-hand side one can replace r} and Dy(r!) by the
closure r+ and any dense subset D C D(r?). By Lemma 4 we can take

D= {u € H'(II) : there exists [b, ] C (0,a) such that u(x) = 0 for z; ¢ [b, c]},

and we keep the symbol 1 for 7T on D, as it is given by the same expression.
Therefore,

+
ML) <l sup 2l (29)
aim9=j 4S5 ez )

Then integration by parts shows that for « € D one has

L[ [ f 2o o

which implies

i (u, u) :(1+ca)/0a/w ((|8Su|2+n
_(1—1-108)6/0ai/(9wu2d7—d5
:(1—1-05)[/&/ (|asu’2+" -
[y

19
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Note that the functional in the curly brackets is the bilinear form b.,(, ) as defined in
Subsection 2.3 with p(s,€) = s(14ce) 2. Let 1) = th.y(s) be the positive normalized
eigenfunction of B.,s.) for E1(Beyse)). By Lemma 6, for any € > 0 the map R >
§ > Yepse) € LAHw) is C®. If f € C(0,a), then also R 3 s+ f(8)1ep(se) € L(w)
is C*°, and the derivative (which is smooth and with compact support) coincides
with the weak derivative in IT with respect to s. It follows that the function (s,t) —
J(8)ep(se)(t) belongs to the above subspace D. Moreover, if S C C°(0,a) is a
j-dimensional subspace, then

S={u:TT>R: us,t) = f(s) Yepen(t), f € S},

is a j-dimensional subspace of D. For any u € S one has lull2any = || fll20,0) bY
Fubini’s theorem and

9 ES 2 2
/]J |th| dt — m /8wu dr = E1<B8p(875))f(8)

due to the spectral theorem. Furthermore,
/ / [Osul® dt ds = (8)theptor) (1) + F(5)0tbupoer (1) dtds
- / / [ sty (1 + F (510t ()
+ F(8)(5) - 20epone) (E) Dstoopsne (t)} dt ds,

while

[ 200 000t = [

Therefore,

a n®—2n a n?—2n
i L (a5 Y avas = [ 17 Pe (gt [J0e ) ]

The substitution into (31) shows that for any u € S there holds

2
{[theptoe) (O] At = Dl tbepioe) 720y = D51 = 0.

2n

= e [P+ (T2 flowaerar s PEsea)) g

By the estimate (9) in Lemma 6 we can control the term with ds¢. Namely, for
€ (0,a) and ¢ € (0,e9) the values of ep(s,e) are contained in some bounded
interval, and then one can find some K > 0 such that

/w 8sw€p<s,5)(t)‘2 dt = & /w (@%(t)‘pgp(s,g) 6’)(8? 6))2

2

5/<8¢(t)‘ )zdt<K2
(L)t S NPT D p=p(sie) =as

Hence, for all u € S and ¢ € (0, ) one has

T:(u,u) < (14 ce) /Oa l|f/|2+< 24 22 + Ke? +Ew> f21 ds.
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Now we apply Lemma 6(a,c) to the eigenvalue E(B.,.)): there exists ¢y > 0 such
that for all s > 0 and € > 0 there holds

Ey(Bepse)) - —Nyep(s,e) +coe?p’(s,e) N, 1 Co

£2s? - £2s? es (1+ce)? * (1+ce)t

Hence, for all u € S and € € (0, y) we obtain

al o (n*=2n N, 1 )
rH(u, u) < (1+C€>/o [|f| +< 452 _65‘(1+C€)2>f‘|d8

ullZomy — 111 Z2(0.0)

Co 2
—+(1 K
+(1+c5)3+< +ce)Ke

) <f7 M(1+ca € af>L2(0,a) Co
1112200 (1+ce)?
)
<f7 (14-ce)?e af>L2(0,a)
1F11Z2 0.0

The constants ¢, gy are independent of 7 and S. By (29), for any ;7 € N and
e € (0,g9) there holds

=(1+ce + (1 +ce)Ke?

< (1+ce) 4 for ¢ == co+ (1 + ceo)’ Kel.

A +
Aj (Ts) < sl‘nf) sup LU;U) < igf sup Lu;u)
gy Mulliaan = s5200 wes Tl
Mooy s .
<(l+ce) inf sup s Maseepeal)120a) L
SCOs(0a) fes 111 Z20.0)
dlmsf‘j 20
= (14 &) Ej(M14eepea) + - -

Corollary 14. For any 5 € N there exist k > 0 and €9 > 0 such that

N2

AN(T.) < —
i(Te) < (25 +n — 2)2e2

k
+ - for all e € (0,¢0).

Proof. By Lemma 7 for any fixed ¢ > 0 and j € N we can choose K’ > 0 such that

N2 I \*
A w !/
Ej(Mareopea) < Bi(Auroepe) + K== (2j +n—2)22 (1 + ce) i
if € is small enough. The substitution into Lemma 13 gives the result. [

3.3 Lower bound for the eigenvalues of 7.

The lower bound for the eigenvalues of 7. is also obtained using a comparison with
the operators M./ , but requires more work.

Lemma 15. Let j € N, then there exist e > 0 and k' > 0 such that

N2 K

A(T,) > R TR for all e € (0,¢).
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Proof. Take ¢ and ¢ as in Proposition 12. For ¢ € (0, &¢) consider again the unitary
transform V : L2(II) — L*(I,e"s"ds dt), (Vu)(s,t) = e 25 2 u(s,t), and the
symmetric bilinear form r; (u,u) := p- (Vu,Vu). The reparametrization u — Vu
in the lower bound of Proposition 12 leads to

Aj(T;) > inf sup re ()

_ ull2
S(%ﬁ(g(;;) Z% | ||L2(H)

, Do(r2) ==V~ 'Dy(pe) = Do(p).  (32)

The substitution of Vu into p- and the partial integration (30) show that

rg(u,U):(l—ce)/oa/w ((|35u|2+n

1 /al/ 2 4rd
- - u” drds
(1 —ce)eJo s Jow

= (1 — ce) [/O/W (lasu|2 + n u2> dt ds (33)

a 1 9 €S
- at——"— [ wa }d ,
+/o 5252{/w|vtu| (1 —ce)? oo 81

p(s,e) = A= g € (0,m), m:= A= e e € (0,e9).

2

-2 1
12 n u2) + =y |Vtu|2) dt ds

2n
452

The expression in the curly brackets is the bilinear form b, () for the Robin Lapla-
cian B, on w as discussed in Subsection 2.3. Denote by ., the positive
eigenfunction for Ey(B.jse)) With [[¢epse)llr2@w) = 1, then s = ey is CF by
Lemma 6. We decompose each u € Dy(r.) as

w=v+w with v(s,t) = Yepen () £(s),  F(s) = /w (s, 8) Yoo (t) dt.
By construction we have f € C2°(0,a) and, furthermore,
/ww(s,t) Vep(se)(t) dt =0 for any s € (0, a), (34)
1£llz200) = I0llz2qnys 117200 + lwlZoam = lullZam)- (35)
The spectral theorem applied to B, ) implies that for any u € Dy(r;) there holds
/w Vyu(s, )2 dt — ep(s, &) /aw u(s, 1) dr()
> E1(Bopo) F(5)? + Ea(Bopio) [ w(s.t)? dt. (36)

By Lemma 6(c) one can find a constant ¢; > 0 such that

N, x
Ey(B,) = —N,z+ O(z?%) > — T en

for all sufficiently small z > 0.
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We have ep(s,e) € [0,meg]. By adjusting the value of g9 we conclude that there
exists ¢ > 0 such that for all £ € (0,¢¢) and s € (0,a) one has

E1(Bep(s,)) - _ N,ep(s,e) o N, es
£252 - 5232<1 — clep(s,g)) (1 — ce)2e282 (1 _ 0158)
(1 —ce)?
Nw Nw

53((1 —ce)? — cles) - ~es(l—ce)

By Lemma 6(d) we can find Cy > 0 such that Fy(B,) = EY +o(1) > C; for small
x > 0. Hence, if ¢ is sufficiently small, s € (0,a) and € € (0,¢q), then (36) implies

N, C
Voul? dt — / 2d>>—‘” 24 20 [ w2 dt,
£2s2 </| tul pls.<) oo )= 53(1—025)f(8) +5232 o

which is valid for all u € Dy(r-). The substitution of the last inequality into (33)
shows that for all € € (0,¢¢) and u € Dy(r>) there holds

a 2 _
ro(u,u) > (1— ca)/ / <|(9Su|2 + 7122nu2> dtds

_ a f2
1—056’0//—(115(18 w1 «“ f—ds

—coe Jo e€s

To have a simpler writing we further choose a suitable k£ > ¢ and adjust gy such that
for all € € (0,¢¢) and u € Dy(r_) one obtains

i) > @) [ (jo 4 S22 dvas .

N, a f2
dtds — —d
//5282 ° 1—keJo es 5

For the sake of brevity we will denote

= ¢ap(s,£)a Vs =051, g = dsv,  ws = Osw .

Let us study the first integral on the right hand side of (37). Using the orthogonality
relations (34) we obtain

[ (1o +

—2n
_ 2 2
" = < Uy —|— 1s2 ) dtds

)a
+/0/w< —2n )dtds—l—Z//vswsdtds (38)
/O/vdtd

We have
|+ fibs|* dt ds
(IF'P¢ + F2lusl® + 2 fps) dt ds.

s
s

a\a\
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Due to the normalization of 1) one has

/wzwsdtzas/wwdtzag:o,

therefore,

| [ezatas= [F(177 + 0l ) ds = [ 1 as
0 Jw 0 0

and, consequently,

//( )dtd5>/ [|f|2 Sznf]ds. (39)

In order to estimate the two last terms in (38) we note that

2/a/vsws dtds:2/a/f’¢ws dtds+2/af/¢)sws dt ds  (40)
0 w 0 w 0 w

and that, in view of (34),

/w(zpwerwsw)dt:(93/wwwdt:(980:0, /wm% dt:—/wwsw dt.

Hence, using |2zy| < 22 + ¢?,

’2/a/f’¢ws dt ds| = ‘2/a/f’¢swdt ds
0 Jw 0 Jw
< [ (17102 + ) deds = [l ds + lwlag. (41)
0 Jw 0
Similarly,
‘/ [ vyw,dtd ’/flz/;\/_dtd
s Ws S s VEWs S
NG

S/O [ (7 2w eur)dvds = - [* Plunla, ds + el (42)

Now we represent

2

el = [ 10ee OF at = == [ (90

2
) dt.
p=ep(s.e)

As ep(s,e) € (0,egm) for all s € (0,a) and € € (0,g9) we can use the estimate (9)
of Lemma 6: there exists K > 0 such that for all ¢ € (0,¢0) and s € (0,a) one
has (4|72, < Ke? < e (assuming that & is sufficiently small). We now use the
obtained estimate in (41) and (42), which gives

’/Oa/wfll/}ws dt ds
’/Oaf/wwsws dt ds

<e [C1FP ds+ el

< Ks/o f? ds +5||w5||%2(n).
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The substitution of these two inequalities into (40) gives

/a/vsws dt ds
0 Jw

We now use the last obtained inequality and (39) in (38), which gives

a 2 _ a 2
I <|88“|2 + u2> dtds > | [(1 oI+ (- Ke>f2] ds
0 Jw 0
a 2 _
+/l/[G—fﬁﬁ4—Cl%fn—lyﬁ1&d&
0 Jw

for all € € (0,¢¢) and u € Dy(r-). Using this lower bound in (37) one arrives at

< 5/0 £ ds+K5/0 £2 ds + || + ellwsl 2.

2

ro(u,u) > (1 — ke) /Oa l(l —&)|f'|* + (n 4—82271 — K5> f21 ds

(1 — ke) /O/w [(1 — e+ (”24_822” - 1) wQ] dt ds

Co a w2 Nw af2
— —— dtds — —d
+2/O/w€282 iy 1—keo es §
2

> (1—ke) [ [(1 — )|+ (” - Ke) f?] ds
N, fof?
1—keo gd

S — ||w||%2(n)-

By taking sufficiently large b > k and ¢ > 1 and a smaller value of g3 one deduces
from the last inequality the simpler lower bound

ez [ e (S

— I fllZ20.0) = € NlwlZzq)-

Using the norm equality (35) this is equivalent to

= (1 - bE) <f7 M(l—be)za,af>L2(0,a)~

By the norm equality (35), the map u — (f, w) uniquely extends to a unitary
map ¥ : L2(TT) — L*(0,a) & H, where H is some closed subspace of L*(II). Let h.
be the symmetric bilinear form in L?(0,a) & H defined as the closure of the form

a 22 N,
C?(O,a)x?—[a(f,w)r—)/o [|JN|2+ (n 4g2 A (1—b€)268> fﬂ ds,

then the corresponding self-adjoint operator in L?(0,a) ® H is H. = M1 —pey2e,a D 0.
The inequality (43) reads as 72 (u,u) + ¢||[ull7z2qmy > (1 — be) he(Vu, Yu) for all
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UEDO<

r>), and the lower bound (32) for A;(7;) implies that for any j € N and any
g€ (0,g) t

here holds

ro(u,u) + Nl

Aj(T.)+ ¢ > inf sup 2
SCDo(rs ) ues HuHL2 I
dim S=j u#0

(1 —be)h(Vu, Tu)

> inf sup 44
SSim e o 1Pl 22 0 e “
he(v,
> (1—10be) inf sup _helo,v) = (1—be)A;(H,).
s 155 iz men
By Lemma 7, for some Ky > 0 and for all sufficiently small € > 0 we have
N2
Ej(Ma_pey2ea) < Ej(Aq—peye) + Ko = — - + Ko <0,

(27 + 1 — 2)2(1 — be)ie2

hence, Aj(H:) = Aj(M_pey2ea ®0) = Ej(M1_pe22,4), and it follows by (44) that
Aj(T€)+C, Z (1 b€) ]< (1—be)2 sa) By (13) we have Ej(M(lfba)Qs,a) Z Ej(A(lfbs)Qs)u
therefore,

Aj(TE) Z (1 — bg)Ej(A(lfbs)Qs) — C/
~ NS i NS K
(27 +n —2)(1 — be)3e? — (2j4+n—2)22 ¢

for a suitably chosen k&’ > 0 and all sufficiently small € > 0. O

By combining Corollary 14 and Lemma 15 we obtain the main result of the
section:

Proposition 16. For any j € N there holds

AT = — D +0(1> ot
I = T — 222 e) e

4 End of proof of Theorem 1

Note that the right-hand side of the asymptotics in Proposition 16 corresponds to
the sought asymptotics for £;(Q.) in Theorem 1. In order to conclude the proof
of Theorem 1 it remains to show that the eigenvalues of ). and 7. with the same
numbers are closed to each other. This will be done in several steps.

Lemma 17. For any j € N and € > 0 there holds A;(Q.) < A;(T7).

Proof. Let J : L*(V.) — L*(Q.) be the operator of extension by zero, then J is a
linear isometry with JD(t.) C D(q.) and with ¢.(Ju, Ju) = t.(u,u) for all u € D(t.),
and the result follows directly by the min-max principle. ]
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Recall that the subspaces C2°(€.) were defined in (6). For b > 0 denote

‘N/b::QEH{x1>b}E{(a:1, ) ( )xR”:x’Esxw}CR”“,
0Vep = 02 N {1 > b} = {(21, @ 00) x R": ' € exy0w} C OVz,y,

H{(V.,) = the closure of Clroo) (ﬁs) in H' (Vg,b)

and let TE » be the self-adjoint operator in L? (VE ») defined by its symmetric bilinear

form s
tep(u,u) = /~ |Vul? dz —/ u® do,  D(t.p) = Hy(Voy).
Ve 80Ve b
Lemma 18. For any g > 0 and b > 0 there exists ¢ > 0 such that
inf spec 1., > ¢ for all e € (0,¢9).
€

Proof. Let u € Cg’b‘joo) (€2.), then due to Lemma 8 one has

fe,b(u,u) > /~ 10, ul* dz + /OO {/ \Vpu(zy, 2')|* da’
Ve b ExiW

— (ez1)"'V1 + R2e? /&u u(zy, exit)? dT(t)} dzy. (45)

We have
/ V(e o) de’ = (ea)" / (Vo) (1, e18) |2 dt
T / V(e cait)[? dt

and then

/ \Veu(zy, 2 )[?da’ — (exy)" V1 + ]%252/8 u(zy, exit)® dr(t)

= (ex;)" 2 [/ |Viu(zy, exit)|? dt — ez V1 + R252/8 u(zy, exqt)? dr(t)

= (5x1)”_268x1m(u(x1, exy-), u(zy, 5951-))

> (ex1)" 2By (B.,,, s / u(zy, exit)? dt
1

2
WEl(ngl /1+R2€2)Lxlw U(.lex/> df]jl.

The substitution into (45) gives

~ o~ Fi(B
tab(’U/,u) 2 / 1( Exl\/1+R262) / u? de/ dl’l
b Ex1W

(8%1)2
> inf El 8x1 1+RQ~’52 / / u? da! dzq
T x>b é‘xl ExTIWw
= i DBenvrzm)y o
Co>b (exq)? Vew)'
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By Lemma 6(c) there exists co > 0 such that Fy(B,) > —N,r — cor? for all r > 0.
Hence, for any x; > b we have

E\(B.,, isme) o ~Neemv1+ R2e2 — coe®r3(1 + R%e?)
(exq)? - (exq)?

N, V1+ R2%e?
_€+€ — o1 + R%?)
T

Noy/1+ R?e3
ARG s

- be

with ¢ := (N 1+ R2e3 + begeo(1 + R2e ))/b and the substitution into (46) gives
the result. ]

Lemma 19. Let j € N. Then there exist K > 0 and €9 > 0 such that for all
e € (0,e0) there holds A;(Q.) > A;(T2.) — K.

Proof. The argument uses the same idea as in Lemma 7. Let Xl, X2 € C*(0,00)
with 0 < x1,x2 < 1 and x} 4+ x3 = 1, such that x;(s) =0 for s > 32 and xa(s) =0
for s < 4. We set K := ||x\[|Z + |[x4|% and define functions p; : (xl, ") = x(2),
then p? + p2 = 1 and [|[Vp1||2, + ||[Vpe|% = K. Tt is convenient to denote b :=
For any u € Cf (€2.) one has

a
1°

| VuPde= [ [Vp)Pdet [ Vol de— [ w9+ [Vpal?) da

>/ IV (p1u) |2da7—|—/ (pau) |2dx—K/ u? dz.

As pju vanishes for z; > —“ and pyu vanishes for z; < g, one can rewrite the last

inequality as
/ |Vu|*dz + K/ u® dr > / |V(p1u)|2dan—|—/~ |V (pau)|? dz.
QE Qa Ve ‘/s,b
Also remark that pyu € HL(V.) and pyu € f—I\&(\N/&b), and
/ lul? do = / |p1ul® do +/ |p2ul® do = / |p1u|2 do +/ |paul? do,
695 895 aQE a 0 Eb
Il = [ Il de+ [ lpsulda
Qe Qe
_ 2 24 _ 2 2
= [ Il dz t [ lpwl? de = ol + ol

Substituting these computations into the expression for ¢.(u,u) we obtain

q&(u’ U) + KHUH%Q(QE) > te(p1u7p1u) + Es,b(PQMPQU) for any u € CE)S,OO)<§€>’
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and it follows, using the min-max principle, that for any j € N there holds

qe(u, u) + KHUH%Q(QS)

MQI+K= it su 2
Scc"fg”oo)('ﬂg) Zgg HUHLQ(Qg)
dim S=j
. te(pru, pru) + tep(pou, pou
e o “n
0G0 @) ues P2y T 1P2 L,
im S=j

le ) t~£ ) '8
> inf sup (u; w) + ’b(u22 u) =N(T. B T.).
SCD(te)®D(tep) (u1,u2)eS ||u1||L2(VE) + ||u2||L2(\~/ )
dim S=j (w1,u2)#0 b

Now let j € N be fixed. As ¢ — 0", by Proposition 16 we have A;(7.) ~ —ce ™2
with some ¢ > 0, and by Lemma 18 we have the bound inf spec Tg,b > —ce ! with
some ¢ > 0. So for all sufficiently small ¢ > 0 one has A;(7.) < inf spec 1., which
implies A;(T. ® T.,) = A;(T.). The substitution into (47) finishes the proof. O

The following assertion together with the asymptotics of A;(7;) from Proposi-
tion 16 completes our proof of Theorem 1:

Proposition 20. Let j € N be fized, then:

« one can find some £; > 0 such that Q. has at least j discrete eigenvalues below
inf spec,, Q- for all € € (0,¢,),

o there holds Ej(Q.:) = A;(T.) + O(1) as e — 0*.

Proof. Let us fix j € N. By combining the upper bound of Lemma 17 and the lower
bound of Lemma 19 we obtain A;(Q.) = A;(T:) + O(1). By Proposition 16 we have
A1 (T:) — Aj(T:) — +oo as ¢ — 0T, It follows that there exists ¢; > 0 such that
Aj(Q:) < Aj11(Qe) for all € € (0,¢5), and then E;(Q.) = A;(Q.) for the same ¢ due
to the min-max principle. ]

References

1] R. A. Adams, J. J. F. Fournier: Sobolev spaces. Second edition. Academic Press,
2003.

[2] W. Arendt, A. F. M. ter Elst, J. Gliick: Strict positivity for the principal eigenfunc-
tion of elliptic operators with various boundary conditions. Adv. Nonlin. Stud. 20:3
(2020) 633-650.

[3] J. Behrndt, T. Micheler: Elliptic differential operators on Lipschitz domains and
abstract boundary value problems. J. Funct. Anal. 267 (2014) 3657-3709.

[4] V. Bruneau, K. Pankrashkin, N. Popoff: Figenvalue counting function for Robin
Laplacians on conical domains. J. Geom. Anal. 28 (2018) 123-151.

[5] V. Bruneau, N. Popoff: On the negative spectrum of the Robin Laplacian in corner
domains. Anal. PDE 9:5 (2016) 1259-1283.

[6] D. Bucur, P. Freitas, J. B. Kennedy: The Robin problem. A. Henrot (Ed.): Shape
optimization and spectral theory. De Gruyter Open, 2017, pp. 78-119.

29



[7]

H. L. Cycon, R. G. Froese, W. Kirsch, B. Simon: Schridinger operators: with
applications to quantum mechanics and global geometry. Texts and Monographs in
Physics. Springer Study Edition. Springer-Verlag, Berlin, 1987.

P. Exner, A. Minakov: Curvature-induced bound states in Robin waveguides and
their asymptotical properties. J. Math. Phys. 55 (2014) 122101.

F. Gesztesy, M. Mitrea: Generalized Robin boundary conditions, Robin-to-Dirichlet
maps, and Krein-type resolvent formulas for Schridinger operators on bounded Lip-
schitz domains. D. Mitrea, M. Mitrea (Eds.): Perspectives in Partial Differential
Equations, Harmonic Analysis and Applications; Proc. Sympos. Pure Math., vol.
79, Amer. Math. Soc., Providence, RI, 2008, pp. 105-173.

F. Gesztesy, M. Mitrea: A description of all self-adjoint extensions of the Laplacian
and Krein-type resolvent formulas on non-smooth domains. J. Anal. Math. 113
(2011) 53-172.

D. Gitman, I. Tyutin, B. Voronov: Self-adjoint extensions in quantum mechanics.

General theory and applications to Schrodinger and Dirac equations with singular
potentials. Progr. Math. Phys., vol. 62, Springer, 2012.

P. Grisvard: Elliptic problems in nonsmooth domains. Pitman Publishing, 1985.

B. Helffer, A. Kachmar: Figenvalues for the Robin Laplacian in domains with vari-
able curvature. Trans. Amer. Math. Soc. 369 (2017) 3253-3287.

B. Helffer, A. Kachmar, N. Raymond: Tunneling for the Robin Laplacian in smooth
planar domains. Comm. Contemp. Math. 19 (2017) 1650030.

B. Helffer, K. Pankrashkin: Tunneling between corners for Robin Laplacians. J.
London Math. Soc. 91 (2015) 225-248.

A. Kachmar, P. Keraval, N. Raymond: Weyl formulae for the Robin Laplacian in
the semiclassical limit. Confl. Math. 8:2 (2016) 39-57.

T. Kato: Perturbation theory for linear operators. Reprint of the 1980 edition. Clas-
sics in Mathematics. Springer-Verlag, Berlin, 1995.

M. Khalile, V. Lotoreichik: Spectral isoperimetric inequalities for Robin Lapla-
cians on 2-manifolds and unbounded cones. J. Spectral Theory (in press). Preprint
arXiv:1909.10842.

M. Khalile, T. Ourmieres-Bonafos, K. Pankrashkin: Effective operators for Robin
eigenvalues in domains with corners. Ann. Institut Fourier 70 (2020) 2215-2301.
M. Khalile, K. Pankrashkin: FEigenvalues of Robin Laplacians in infinite sectors.
Math. Nachr. 291 (2018) 928-965.

D. Kielty: Degeneration of the spectral gap with negative Robin parameter. Preprint
arXiv:2105.02323.

H. Kovarik, K. Pankrashkin: Robin eigenvalues on domains with peaks. J. Differen-
tial Equations 267 (2019) 1600-1630.

A. A. Lacey, J. R. Ockendon, J. Sabina: Multidimensional reaction diffusion equa-
tions with nonlinear boundary conditions, STAM J. Appl. Math. 58:5 (1998) 1622—
1647.

M. Levitin, L. Parnovski: On the principal eigenvalue of a Robin problem with a
large parameter. Math. Nachr. 281:2 (2008) 272-281.

M. A. Lyalinov: A comment on eigenfunctions and eigenvalues of the Laplace oper-
ator in an angle with Robin boundary conditions. J. Math. Sci. (N.Y.) 252 (2021)
646-653.

30



[26]
[27]

[28]

[29]
[30]

[31]

32]

V. G. Maz’ya, S. V. Poborchi: Differential functions on bad domains. World Scien-
tific, 1997.

K. Pankrashkin: On the discrete spectrum of Robin Laplacians in conical domains.
Math. Model. Nat. Phenom. 11:2 (2016) 100-110.

K. Pankrashkin, N. Popoff: An effective Hamiltonian for the eigenvalue asymptotics
of the Robin Laplacian with a large parameter. J. Math. Pures Appl. 106 (2016)
615-650.

N. Raymond: Bound states of the magnetic Schridinger operator. EMS Tracts in
Mathematics, Vol. 27, EMS Publ. House, 2017.

M. Reed, B. Simon: Methods of modern mathematical physics. IV. Analysis of op-
erators. Academic Press, New York-London, 1978.

J. Rosenberg: Applications of analysis on Lipschitz manifolds. M. Cowling,
C. Meaney, W. Moran (Eds.): Miniconferences on harmonic analysis and operator
algebras (Canberra, 1987), Proc. Centre Math. Anal. Austral. Nat. Univ., vol. 16,
Austral. Nat. Univ., Canberra, 1988, pp. 269-283.

J. R. Silvester: Determinants of block matrices. Math. Gazette 84:501 (2000) 460—
467.

31



