The 3D scalar transmission problem in the presence of a conical tip of negative material

Anne-Sophie Bonnet-Ben Dhia¹, Lucas Chesnel², <u>Mahran Rihani³</u>

¹UMA/POEMS, ENSTA Paris, Palaiseau, France,

²UMA/IDEFIX, ENSTA Paris, Palaiseau, France,

³CMAP, École polytechnique, Palaiseau, France.

In this work, we are interested in the study of the 3D scalar transmission problem between a positive material Ω^+ and a negative one Ω^- . The interface that separates Ω^+ and Ω^- (which will be denoted by Σ) is assumed to be smooth except near a certain point O where it has a conical singularity. More precisely, the problem that we are interested in is the following:

Find $u \in \mathrm{H}^{1}_{0}(\Omega)$ such that $-\mathrm{div}(\sigma \nabla u) = f \in \mathrm{H}^{-1}(\Omega)$,

where $\Omega = \Omega^+ \cup \Omega^- \cup \Sigma$, $\sigma_{|\Omega^+} = \sigma^+ \in \mathbb{R}^*_+$ and $\sigma_{|\Omega^-} = \sigma^- \in \mathbb{R}^*_-$. Since the function σ changes sign, the previous problem can be ill-posed even in the Fredholm sense (i.e. lost of ellipticity). By applying the Mellin transform to the problem, we can determine whether it is well-posed by studying the spectral properties of its Mellin symbol. By combining the T-coercivity approach and some localization techniques, we are able to show that the spectrum of the Mellin symbol is discrete, composed by the normal eigenvalues and localized inside a double sector of the complex plane. With this in mind and by using the classical Kondratiev theory, we show that the problem is well-posed in the classical Sobolev space H¹ if and only if the contrast (i.e. σ^-/σ^+) does not belong to a critical set called the critical interval.

This critical interval corresponds to the set of contrasts for which the problem has propagating singularities (singularities whose singular exponent is of the form $\lambda = -1/2 + i\eta$ with $\eta \in \mathbb{R}$). Note that for the particular case of the circular conical tip, an explicit expression for the critical interval can be found.

In order to recover the well-posedness for the case of critical contrasts, we need to study the asymptotic behavior of the spectrum and the associated eigenvectors/generalized eigenvectors of the Mellin symbol with respect to small perturbations. In this way, we are able to construct a new functional framework that accounts for some of the propagating singularities (i.e., the outgoing ones) in which the problem is again well-posed and that is consistent with physical reality (i.e. the limiting absorption principle).