Spectral properties of quantum graphs violating the time-reversal invariance

Pavel Exner

Doppler Institute for Mathematical Physics and Applied Mathematics, Prague

The main topic of this talk are quantum graphs with the vertex coupling which does not preserve the time-reversal invariance. As a case study we analyze a simple example in which the asymmetry is maximal at a fixed energy. This has an interesting consequence, namely that high-energy scattering depends crucially on the vertex parity; we will demonstrate implications of this fact for spectral and transport properties in several classes of graphs, both finite and infinite periodic ones. Furthermore, we discuss other timeasymmetric graphs and identify a class of such couplings which exhibits a nontrivial \mathcal{PT} -symmetry despite being self-adjoint. Finally, we will illustrate how the presence or absence of the Dirichlet component in the vertex coupling is manifested in the spectrum. The results come from a common work with Marzieh Baradaran, Jiří Lipovský, and Miloš Tater.

Mailing addresses: Department of Theoretical Physics, NPI Czech Academy of Sciences Hlavní 130, CZ-25068 Řež near Prague; Department of Physics, FNSPE Czech Technical University Břehová 7, CZ-11519 Prague

E-mail: exner@ujf.cas.cz