High-contrast random composites: homogenisation framework and new spectral phenomena

Mikhail Cherdantsev (Cardiff University)

with M. Capoferri (Heriot-Watt), K. Cherednichenko (Bath), I. Velčić (Zagreb)

We study the homogenisation problem for elliptic operators of the form $\mathcal{A}_{\varepsilon} = -\nabla A_{\varepsilon} \nabla$ with high-contrast random coefficients A_{ε} . In particular, we are interested in the behaviour of their spectra. We assume that on one of the components of the composite the coefficients A_{ε} are "of order one", the complementary "soft" component consists of randomly distributed inclusions, whose size and spacing are of order $\varepsilon \ll 1$, and the values of A_{ε} on the inclusions are of order ε^2 .

Our interest in high-contrast homogenisation problems is motivated by the bandgap structure of their spectra. From an intuitive point of view this phenomenon can be explained by viewing the "soft" inclusions as micro-resonators, which may dramatically amplify of completely block the propagation of waves in the medium, depending on the frequency. From a mathematically rigorous perspective, this was first analysed by Zhikov (2000, 2004) in the periodic setting.

Despite a vigorous activity in the field of periodic high-contrast homogenisation during the last two decades, the stochastic (random) high-contrast setting was largely overlooked, perhaps due to the technical challenges and more complicated intuitive picture.

In this talk I will present our recent results in this area. We analyse the homogenised operator \mathcal{A}_{hom} and its spectrum. We prove the convergence of the spectra of $\mathcal{A}_{\varepsilon}$ and describe the limit set $\lim_{\varepsilon \to 0} \operatorname{Sp}(\mathcal{A}_{\varepsilon})$. In contrast with the periodic setting, in the stochastic case the spectrum of the homogenised operator is, in general, a proper subset of $\lim_{\varepsilon \to 0} \operatorname{Sp}(\mathcal{A}_{\varepsilon})$. We analyse the "additional" part of the spectrum - the difference between $\lim_{\varepsilon \to 0} \operatorname{Sp}(\mathcal{A}_{\varepsilon})$ and $\operatorname{Sp}(\mathcal{A}_{hom})$, and provide its *asymptotic* characterisation.