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1. Risk measures and premium principles – a comparison 

 
A premium principle H resp. a risk measure R is a non-negative mapping on ,Z  the 
set of non-negative risks, with the property 
 

( ) ( )X YP P H X H Y= ⇒ =    for all , ,X Y ∈Z  
 
i.e. the premium resp. the risk measure depends only on the distribution of the risk. 
 
 
Example: ( ) ( ) ( )H X R X E X= =    
 
[Expected risk; net risk premium; average risk] 
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1. Risk measures and premium principles – a comparison 

 
A premium principle  H  is called 
 
 
positively loaded (pl), if:  

 
( ) ( )H X E X≥  for all ;X ∈Z  

 
positively homogeneous (ph), if:  
 

( ) ( )H cX c H X=  for all 0  and  ;c X≥ ∈Z� 
 

additive (ad), if:  
 

( ) ( ) ( )H X Y H X H Y+ = +  for all , ,X Y ∈Z  
 
with  ,X Y  being stochastically independent; 
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1. Risk measures and premium principles – a comparison 
 

total loss bounded (tb), if:  
 

{ }( ) : sup | ( ) 1X XH X x F xϖ≤ = ∈ <  for all ,X ∈Z  
 
where XF  denotes the cumulative distribution function of X; 
 
 

stochastically increasing (si), if:  
 

( ) ( )H X H Y≤  for all ,X Y ∈Z  
 
being stochastically ordered, i.e. ( ) ( )X YF x F x≥  for all .x ∈  
 
Remark: Each additive premium principle H also is translation invariant (ti), i.e.  
 

( ) ( )H X c H X c+ = +  for all and .X c∈ ∈Z  
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1. Risk measures and premium principles – a comparison 

 
Let 0.δ≥  Then the premium principle  H  with  

 
( ) (1 ) ( ),H X E X Xδ= + ∈Z  

 
is called expectation principle (ExP) with safety loading factor .δ  
 
Let 0.δ≥  If the variance ( )Var X  exists, then the premium principle  H  with 
 

( ) ( ) ( ),H X E X Var X Xδ= + ∈Z  
 

is called variance principle (VaP) with safety loading factor .δ  
 
Let 0.δ≥  If the variance ( )Var X  exists, then the premium principle  H  with 
 

( ) ( ) ( ),H X E X Var X Xδ= + ∈Z  
 

is called standard deviation principle (StP) with safety loading factor .δ  
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1. Risk measures and premium principles – a comparison 

 
Let :g + +→  be strictly increasing and convex.  Then the premium principle  
H  with 

( )( )1( ) ( ) ,H X g E g X X−= ∈Z  
 
is called mean value principle (MvP) w.r.t.  g. 
 
Let :g + +→  be strictly increasing. Then the premium principle  H  with 
 

[ ]
[ ]

( )
( ) ,

( )
E X g X

H X X
E g X

⋅
= ∈Z  

 
is called Esscher principle (EsP) w.r.t  g. 
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1. Risk measures and premium principles – a comparison 

 
Let ( )0,1 .α∈  Then the premium principle  H  with 
 

( ) { }1( ) 1 inf | ( ) 1 ,X XH X F x F x Xα α− += − = ∈ ≥ − ∈Z  
 

is called percentile principle (PcP) at risk level .α  
 
 

 

This premium principle is also known as 
 

Value at Risk  at risk level α   
 

resp. as  VaRα    (→ PML). 
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1. Risk measures and premium principles – a comparison 

 
property 
principle 

pl ph ad tb si 

ExP yes yes yes no yes 
VaP yes no yes no no 
StP yes yes no no no 
MvP yes no no yes yes 
EsP yes no no yes no 

PcP (VaR) no yes no yes yes 
 

Each premium principle can in principle also be considered as a risk measure. How-
ever, more specific attributes of risk measures have been developed in the context of 
the solvency capital for  banking and insurance companies (→ Basel II, Solvency II). 
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1. Risk measures and premium principles – a comparison 
 

A risk measure R is called coherent according to ARTZNER, DELBAEN, EBER und 
HEATH, if it possesses the following properties: 
 
• R is positively homogeneous (ph), i.e.  
 

( ) ( )R cX c R X=  for all 0  and  ;c X≥ ∈Z� 
 

• R is translation invariant (ti) , i.e. 
 

( ) ( )R X c R X c+ = +  for all and ;X c∈ ∈Z  
 

• R ist sub-additive (sa), i.e. 
 

( ) ( ) ( )R X Y R X R Y+ ≤ +  for all , ;X Y ∈Z� 
 
• R is increasing (in), i.e.  
 

( ) ( )R X R Y≤  for all ,  with .X Y X Y∈ ≤Z�  
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2. VaR vs. Expected Shortfall 
 

 
The international discussion of risk measures as a basis for the determination of the 

target capital for Solvency II (IAA, DAV, SST) concerning the total risk 
1

n

i
i

S X
=

=∑  

(from assets and liabilities) clearly focuses on  
 
 

Value at Risk: ( ) { }1 1 inf | ( ) 1S SVaR F x F xα α α− += − = ∈ ≥ −  
 
 

(→ Life Insurance) and 
 

 

Expected Shortfall: ( )|ES E S S VaRα α= >  
 

(→ Nonlife Insurance).  
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2. VaR vs. Expected Shortfall 
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2. VaR vs. Expected Shortfall 
 

 
Common Pro’s in favour of Expected Shortfall against Value at Risk: 
 
 
• ESα  is a coherent risk measure, VaRα  is not (→ sub-additivity) 

• ESα  provides a quantification of the potential (high) loss, VaRα  does not 

• ESα  enables a risk-adjusted additive capital allocation through 
 

( ): |iiEX E X S VaRαα = >  

 

Theoretically o.k., but does it work in practice? 
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2. VaR vs. Expected Shortfall 
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3. Dependence and its implications for risk measures 
 

 
A function C  of n variables on the unit n-cube [0,1]n  is called a copula if it is a multi-
variate distribution function that has continuous uniform margins. 
 
 
 
Fréchet-Hoeffding bounds: 
 

1 1 1mimax( 1, n( ,( ,0) , ) , )n nnC u uu u u un+ + − ≤+ ≤  
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3. Dependence and its implications for risk measures 
 
 
Theorem (Sklar). Let H denote a n-dimensional distribution function with margins 

1, , .nF F  Then there exists a copula C such that for all real 1( , , )nx x , 
 

( )1 1 1(( , ), ,) ., ( )n n nF x Fx CH x x=  
 

If all the margins are continuous, then the copula is unique, and is determined uniquely 
on the ranges of the marginal distribution functions otherwise. Moreover, if we denote 
by 1 1

1 , , nF F− −  the generalized inverses of the marginal distribution functions, then 
for every 1( , , )nu u  in the unit n-cube, 
 

( )1 1
11 1(( , ),, ) ( ) .n n nFC u u FH u u− −=
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3. Dependence and its implications for risk measures 
 

 

Familiar examples of copulas: 
 
Gauß: 
 

11
1 ( )( )

tr 1
1 1

1 1
( , , ) exp ( ) ( )

2(2 ) det( )
,

nuu

n nn
C u u dv dv

π

−− ΦΦ

−
Φ

−∞ −∞

= − − Σ −
Σ

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠∫ ∫ v μ v μ
 

 positive-definiteΣ
  

Student’s t: 
11

1 ( )( )
2tr 1

1 1

12( , , ) 1 ( ) ( )
( ) det( )

2

,
n

nt ut u

t n n
n

n

C u u dv dv
νν

ν
ν

ν νπν

−− +
−

−

−∞ −∞

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

+
Γ

= + − Σ −
Γ Σ

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎛ ⎞⎝ ⎠ ⎟⎜ ⎟⎜ ⎟⎜⎛ ⎞ ⎝ ⎠⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

∫ ∫ v μ v μ

 
 positive-definite, νΣ ∈

 



                   Dietmar Pfeifer 

                 VaR vs. Expected Shortfall  –Risk Measures under Solvency II  

 18 

3. Dependence and its implications for risk measures 
 

 
Familiar examples of copulas (cont.): 
 
Clayton: 

1/

1
1

( , , ) 1 , 0
n

Cl n i
i

C u u u n
θ

θ θ
−

−

=

⎡ ⎤
⎢ ⎥= − + >
⎢ ⎥⎣ ⎦
∑

 
 

Gumbel: 

( )
1/

1
1

( , , ) exp ln( ) , 1
n

Gu n i
i

C u u u
θ

θ θ
=

⎛ ⎞⎧ ⎫⎪ ⎪ ⎟⎜ ⎪ ⎪ ⎟⎜= − − ≥⎟⎨ ⎬⎜ ⎟⎪ ⎪⎜ ⎟⎜ ⎪ ⎪⎩ ⎭⎝ ⎠
∑

 
 

Frank: 

( )1
1

1 1( , , ) ln 1 1 , 0
1

iun

Fr n
i

eC u u e
e

θ
θ

θ θ
θ

−
−

−
=

⎛ ⎞⎧ ⎫⎪ ⎪− ⎟⎜ ⎪ ⎪⎟=− + − >⎜ ⎨ ⎬⎟⎜ ⎟⎪ ⎪⎜ −⎝ ⎠⎪ ⎪⎩ ⎭
∏
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3. Dependence and its implications for risk measures 
 

 
General message: dependence resp. copula has essential influence on risk measures: 
 

Example: heavy-tailed risk distributions, Pareto-type with shape parameter 1 :
2

λ=  

 

                                         density    3
1( ) , 0

2 1
f x x

x
= ≥

+
 

 

cumulative distribution function     1( ) 1 , 0
1

F x x
x

= − ≥
+
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3. Dependence and its implications for risk measures 
 
Case 1: two independent risks  X,Y of the same type: 
 

32

1( )
1(2 ) 1X Y

z
z

f z
zz+ = ≈

++ +
 

 

 
Case 2: two maximally positively dependent risks  X,Y of the same type: 
 

33
1

4

1( )
2 11 / 2

X Yf
z

z
z

+
+

= ≈
+

 

 

 
Case 3: two maximally negatively dependent  risks  X,Y of the same type: 
 

( )
3 3

4 2 3

6 3 4 1 12 2

1( )X Yf z
z

z z

z z z z
+

+ − +

+ + −
≈

+ +−
=  

 



                   Dietmar Pfeifer 

                 VaR vs. Expected Shortfall  –Risk Measures under Solvency II  

 21 

3. Dependence and its implications for risk measures 
 
 

 
plot of survival functions for cases 1,2,3 

negative dependence 

positive dependence 
independence 
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3. Dependence and its implications for risk measures 
 
 

 
plot of survival functions for cases 1,2,3 

negative dependence 

positive dependence 
independence 

VaRα

α

ESα =∞
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3. Dependence and its implications for risk measures  
 

Exact calculation of Value at Risk: 
 
Case 1: two independent risks  X,Y of the same type:  
 

2 2

4 22
1 1

VaRα α α
= − −

+ −
 

 

 
Case 2: two maximally positively dependent risks  X,Y of the same type: 
 

2

2 2VaRα α
= −  

 

 
Case 3: two maximally negatively dependent  risks  X,Y of the same type: 
 

2 2

4 42
(2 )

VaRα α α
= − −

−
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3. Dependence and its implications for risk measures 
 
 

Consequence:  
 
1. Solvency capital for  
 

one portfolio consisting of two independent risks of the same type 
 

is strictly larger than the  
 

sum of the solvency capitals for two portfolios, each consisting of a single risk! 
 
 

→ no diversification effect! 
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3. Dependence and its implications for risk measures  
 

2. Solvency capital for  
 

one portfolio consisting of two independent risks of the same type 
 

is asymptotically equivalent (for large return periods) to the solvency capital for 
 

one portfolio consisting of two negatively dependent risks of the same type! 
 

 
 

→ independence close to worst case! 
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3. Dependence and its implications for risk measures  
 

Example (cont.): 
 
heavy-tailed risk distributions, Pareto-type with shape parameter 2 :λ=  
 

                                         density    3

2( ) , 0
(1 )

f x x
x

= ≥
+

 

 

cumulative distribution function     2

1( ) 1 , 0
(1 )

F x x
x

= − ≥
+

 

 
 

here: ( ) 2E X Y+ =  
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3. Dependence and its implications for risk measures 
 
Case 1: two independent risks  X,Y of the same type: 
 

( )
5 3

2

4 2

4 10 1048ln(1 )
(2 ) (2 ) (

4( )
(11 ))X Y

z z
f z

zz
z zz z+

+ ++
+=

+
≈

++ +
 

 

 
Case 2: two maximally positively dependent risks  X,Y of the same type: 
 

33

8
(

8)
)) (12

(X Yf
z

z
z+ +

= ≈
+

 
 

 
Case 3: two maximally negatively dependent  risks  X,Y of the same type: 
 
 

no closed form available 



                   Dietmar Pfeifer 

                 VaR vs. Expected Shortfall  –Risk Measures under Solvency II  

 28 

3. Dependence and its implications for risk measures 
 

Calculation of Value at Risk, special case 0,99α=  (i.e. 100 year return period): 
 
Case 1: two independent risks  X,Y of the same type:  
 

14,14 28,72VaR ESα α= =  (numerical evaluation / simulation) 
 
 

Case 2: two maximally positively dependent risks  X,Y of the same type: 
 

18 38VaR ESα α= =   (exact calculation) 
 
 
Case 3: two maximally negatively dependent  risks  X,Y of the same type: 
 

13,15 27,24VaR ESα α= =  (estimated by simulation) 
 

→ rule of thumb: for 2 :λ≈   0,99

0,99

2!
ES

VaR
≈
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4. A (frightening?) example from theory 
 

We consider a portfolio with two risks  X  and  Y  and their distributions given by 
 

x  1 3 100 

( )P X x=  0,90 0,09 0,01 
 

y  1 5 

( )P Y y=  0,20 0,80 
 

Risk level: 0,01α=  corresponding to a return period  T  of 100 years 

 

Risk X is "dangerous",  risk Y is "harmless"
 

(amounts in Mio. €) 
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4. A (frightening?) example from theory 
 

Distribution of total risk S X Y= +  under independence: 
 

s  2 4 6 8 101 105

( )P S s= 0,180 0,018 0,720 0,072 0,002 0,008

( )P S s≤  0,180 0,198 0,918 0,990 0,992 1
 

This implies: 

8VaRα =    and   101 0,002 105 0,008 104,2
0,01

ESα
× + ×

= =  

 

x  1 3 100  y  1 5 

( )P X x=  0,90 0,09 0,01  ( )P Y y=  0,20 0,80 
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4. A (frightening?) example from theory 
 

Risk-based capital allocation with ESα : 
 

s  2 4 6 8 101 105

( )P S s= 0,180 0,018 0,720 0,072 0,002 0,008

( )P S s≤  0,180 0,198 0,918 0,990 0,992 1
 

( ) ( )| 8 100 | 8 4,2EX E X S EY E Y Sα α= > = = > =  
 

x  1 3 100  y  1 5 

( | 8)P X x S= > 0 0 1 
 ( | 8)

( )

P Y y S

P Y y

= > =

=
0,20 0,80 

 

                                                                                        consequence: insufficient capital  
                                                                                     in 80% of all cases! 



                   Dietmar Pfeifer 

                 VaR vs. Expected Shortfall  –Risk Measures under Solvency II  

 32 

4. A (frightening?) example from theory 
 

What is the return period  T  corresponding to a risk (loss) of 104,2?ESα =  
 

 

s  2 4 6 8 101 105

( )P S s= 0,180 0,018 0,720 0,072 0,002 0,008

( )P S s≤  0,180 0,198 0,918 0,990 0,992 1
 
 

1 1
1 0,992 0, 8

125
00

T = = =
−

 

 
Consequence: a risk-based capital allocation with 104,2ESα =  increases the former 
return period of 100 years by only 25% to 125 years, while the capital requirement is 
13-times as much as with a capital allocation based on 8 !!VaRα =  
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4. A (frightening?) example from theory 
 

Proportional risk-based capital allocation with VaRα : 
 

s  2 4 6 8 101 105

( )P S s= 0,180 0,018 0,720 0,072 0,002 0,008

( )P S s≤  0,180 0,198 0,918 0,990 0,992 1
             

( | 8) 1,182 ( | 8) 4, 2
8 8 1, 757 8 8 6, 243

( | 8) 5, 382 ( | 8) 5, 382

E X S E Y S
EX EY

E S S E S S
α α

≤ ≤
= × = × = = × = × =

≤ ≤
 

 

x  1 3 100  y  1 5 

( | 8)P X x S= ≤  0,909 0,091 0 
 ( | 8)

( )

P Y y S

P Y y

= ≤ =

=
 0,20 0,80 

 

                    consequence: insufficient capital in 9,1% of all cases! 
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4. A (frightening?) example from theory 
 

Optimal risk-based capital allocation: 
 

s  2 4 6 8 101 105

( )P S s= 0,180 0,018 0,720 0,072 0,002 0,008

( )P S s≤  0,180 0,198 0,918 0,990 0,992 1
       

                      3 5EX EYα α= =  

 

x  1 3 100  y  1 5 

( | 8)P X x S= ≤  0,909 0,091 0 
 ( | 8)

( )

P Y y S

P Y y

= ≤ =

=
 0,20 0,80 

 

 
consequence: 8 Mio. € capital cover both risks at 0, 01α =  optimally! 
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4. A (frightening?) example from theory 
 

Influence of dependencies (→ copulas) on ESα  and VaRα : 
 
 

( , )P X x Y y= =  1x =  3x =  100x =   
1y =  a – a + b + 0,19 0,01 – b 0,2 
5y =  0,9 – a    a – b – 0,1 b 0,8 

 0,90 0,09 0,01  
 
 
with side conditions 
 

0 0,01
0,1 0,19

b
b a b
< <

+ < < +
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4. A (frightening?) example from theory 
 

Distribution of  total risk S X Y= +  under dependence: 
 

s  2 4 6 8 101 105 

( )P S s=  a – a + b + 0,19 0,9 – a a – b – 0,1 0,01 – b b 

( )P S s≤  a b + 0,19 1,09 – a + b 0,99 1 – b 1 

 
implying 

8VaRα =    and   101 (0,01 ) 105 101 400
0,01

b bES bα

× − + ×
= = +  

Consequence: VaRα  remains unchanged, ESα  varies between 101 and 105! 
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4. A (frightening?) example from theory 
 

Possible reduction of ESα  by reinsurance with priority VaRα : 
 
(net) reinsurance premium: 
 

( ) ( ) ( )( ) 0,93 4 0,93 | 0,97aRV ES VaR E S VaR bα α αα += − = − = + ∈  
 

[reinsurance premium: add safety loading] 
 
 
 

Consequence: target capital reduces to roughly 
 

10 Mio € 
 

only! 
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5. A (frightening?) example from the real world 
 
Example company portfolio: 
 
 

                          windstorm
hailstorm
floodin

 windsto

g

rm 

spatial dependence

34 years of  data         18 yea
 location

rs
location 

climatic dependence (?)

 of  dat
 21  

a

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

 

 



                   Dietmar Pfeifer 

                 VaR vs. Expected Shortfall  –Risk Measures under Solvency II  

 39 

5. A (frightening?) example from the real world 
 
Marginal analysis location 1:  
 
> Indexing 
> Detrending 
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5. A (frightening?) example from the real world 
 
Distribution fitting location 1, windstorm: 
 
    

  Fréchet distribution,  
     max. deviation: 0,36637 

  Loglogistic distribution, 
     max. deviation: 0,64749 

  Pearson type V distribution, 
     max. deviation: 0,37747 

  Lognormal distribution, 
     max. deviation: 0,63799 
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5. A (frightening?) example from the real world 
Anderson-Darling test: 

Distribution type: Fréchet; test statistic: 0,18444 

α  0,25 0,1 0,05 0,025 0,01 
critical value 0,458 0,616 0,732 0,848 1,004 

 
Distribution type: Pearson type V; test statistic: 0,17911 

α  0,25 0,1 0,05 0,025 0,01 
critical value 0,485 0,655 0,783 0,913 1,078 

 
Distribution type: Loglogistic; test statistic: 0,34706 

α  0,25 0,1 0,05 0,025 0,01 
critical value 0,423 0,559 0,655 0,763 0,899 

 
Distribution type: Lognormal; test statistic: 0,52042 

α  0,25 0,1 0,05 0,025 0,01 
critical value 0,459 0,616 0,734 0,853 1,011 
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5. A (frightening?) example from the real world 
2χ  test: 

Distribution type: Fréchet; test statistic: 0,58824 

d.f. α  0,25 0,15 0,1 0,05 0,01 
3 critical value 4,108 5,317 6,251 7,815 11,345 
5 critical value 6,626 8,115 9,236 11,070 15,086 

Distribution type: Pearson Type V; test statistic: 0,94118 

d.f. α  0,25 0,15 0,1 0,05 0,01 
3 critical value 4,108 5,317 6,251 7,815 11,345 
5 critical value 6,626 8,115 9,236 11,070 15,086 

Distribution type: Loglogistic; test statistic: 3,41176 

d.f. α  0,25 0,15 0,1 0,05 0,01 
3 critical value 4,108 5,317 6,251 7,815 11,345 
5 critical value 6,626 8,115 9,236 11,070 15,086 

Distribution type: Lognormal; test statistic: 3,41176 

d.f. α  0,25 0,15 0,1 0,05 0,01 
3 critical value 4,108 5,317 6,251 7,815 11,345 
5 critical value 6,626 8,115 9,236 11,070 15,086 
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5. A (frightening?) example from the real world 
 
 
Summary of marginal statistical analysis: 

 

windstorm:windstorm: 
hailstorm:   
flo

 

o

            

ding:    

   

spatial dependence

     location 2 

Fréc

34 years of  data           
location 1

Fréchet
Lognormal
Lognor

    18 years of  data

m l

het

a

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

climatic dependence (?)
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5. A (frightening?) example from the real world 
 
Dependence analysis: 
 
Spatial dependence location 1 / location 2 (windstorm): 
 

    
 

lo
ca

tio
n 

2 

lo
ca

tio
n 

2 
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5. A (frightening?) example from the real world 
 

 
Estimation methods for bivariate Gumbel copula ( , )C u vλ : 
 

( ){ }1/
( , ) exp ( ln ) ,) ( lnC u v u v

λλ λ
λ = − + −   0 , 1,u v< ≤  

 
with a structural parameter 1.λ≥  The corresponding density is given by 
 

2 1 1
1/ 2 1/( ln ) ( ln )( , ) ( , ) ( , ) ( , ) 1 ( , )u vc u v C u v C u v k u v k u v

u v uv

λ λ
λ λ

λ λ λ λ
− −

−∂ − − ⎡ ⎤= = − +⎢ ⎥⎣ ⎦∂ ∂
 

 
with ( , ) ( ln ) ( , 0 ,l 1.n )k u v u v u vλ λ= − + < ≤−   
 
 
For 1,λ=  the independence copula is obtained. 
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5. A (frightening?) example from the real world 
 

Method I: 
 
Use a functional relationship between the correlation of suitably transformed data and 

.λ  This procedure is documented in REISS AND THOMAS (2001), p. 240f. and relies on 
the fact that, when the original distributions are of negative exponential type, i.e. the 
marginal c.d.f.’s of X and Y are  

 

, 0
( ) ( )

1, 0

x

X Y
e x

F x F x
x

⎧⎪ ≤⎪= =⎨⎪ >⎪⎩
  for ,x∈  

 
then  the correlation ( )ρ λ  between X and Y is given by  
 

2 1

( ) 2 1
2
λρ λ

λ

⎛ ⎞⎟⎜Γ + ⎟⎜ ⎟⎜⎝ ⎠
= −

⎛ ⎞⎟⎜Γ + ⎟⎜ ⎟⎜⎝ ⎠

   for 1.λ≥  
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5. A (frightening?) example from the real world 
 

 

( ) 0, 2746ρ λ =

1,3392λ=
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5. A (frightening?) example from the real world 
 
Method II: 
 
Use the method of maximum-likelihood. For this purpose, consider the function  
 

( ) ( )( ) ( )

( ) { } ( )( )

( ) ( )

1
1 1

1/

1 1 1

1/

1 1

,, , , , ; : ln

1
, ( 1) ln( ln ) ln( ln ) 2 ln ,

ln 1 , ln ln

n

i i
i

n n

n n n

i i i i i i
i i k

n n

i i i i
i i

c u vL u v u v

k u v u v k u v

k u v u v

λ

λ

λ

λ

λ
λ

λ

=

= = =

= =

= =

=− + − − + − + − +

+ − + − +

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

⎡ ⎤
⎢ ⎥⎣ ⎦

∏

∑ ∑ ∑

∑ ∑

 

 
as a function of λ  and find its argmax, i.e. the value of λ  that maximizes 

( ) ( )( )1 1, , , , ;n nL u v u v λ  given the data ( ) ( )1 1, , , ,n nu v u v . 
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5. A (frightening?) example from the real world 
 

 
 

log-likelihood-function and its derivative for storm data 
 

1,33347λ=  
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5. A (frightening?) example from the real world  
 

   
copula densities ( , ;1,3392)c u v  und ( , ;1,33347)c u v  [truncated above] 
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5. A (frightening?) example from the real world 
 

Dependence analysis: 
 

Other dependencies windstorm / hailstorm / flooding: 
 

empirical copula (scatterplot)
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empirical copula (scatterplot)

0,0 0,2 0,4 0,6 0,8 1,0
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Gauß copula: 0,334
0,3782

0,3782
1

0,33

1
1

41

0,2226
0,2226

1

⎡ ⎤
⎢ ⎥
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⎢ ⎥
⎣ ⎦
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5. A (frightening?) example from the real world  
 

PML (VaR) as a function of return period T

40 60 80 100 120 140 160 180 200 220 240 260

return period T
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0,01100 0,01 823 Mio 1880 Mio € € PML VaR ES= == (!)
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6. Conclusions 
 

 
Some Con’s against Expected Shortfall: 

 
• ESα  is based on the average of losses above VaRα and can thus be rigorously 

motivated only by the Law of Large Numbers. However, this is not very mean-
ingful from an economic point of view since defaults are just single events. 

 

• ESα  may thus lead to economically meaningless risk-based capital allocations, 

which in particular do not provide the correct allocations of risks in the „nor-
mal“ situation (i.e. in ( )1 100%α− ×  of the years). 

 
• Compared with VaRα , ESα  does not increase the default return period signifi-

cantly, although the capital requirement might be significantly higher.  
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6. Conclusions 
 

 
• ESα  enforces insurance companies to buy reinsurance to a significantly higher 

extend than today. 
 

• ESα  is definitely not appropriate for portfolios with rare, but potentially very 

large losses (e.g. natural perils: windstorm, flooding, earthquake, …) 
 

• ESα  is extremely sensitive to the statistical estimation of marginal distribu-
tions. 

 
• ESα  is sensitive to dependence structures in the risks. 
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