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Introduction

Bernstein polynomials came to light with the pioneering paper by Serge
Bernstein in 1912 [1] and has ever since become an indispensable tool in
calculus and approximation theory (see e.g. [2]). In this paper, we com-
ment on methods to estimate the quantile function of a continuous dis-
tribution — especially with infinite support — using Bernstein polynomials
in a subtle way, extending similar ideas of Babu et al. [3] or Vil'chevskii
and Shevlyakov [4]. This allows for an easy way to simulate continuous
distributions on the basis of given data, in particular for risk management
purposes when the estimation of a risk measure like Value at Risk (VaR) is
required.
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The general setup

Suppose that n i.i.d. observations X,,---,X, distributed as a risk X are
given. We assume that these observations come from a fixed, but un-
known continuous distribution P* with cdf F, concentrated on a — possi-

bly infinite — interval /. One often assumes that P* belongs to a certain
class of distributions like lognormal, Fréchet, Pareto etc. There are several

methods to estimate P* or F, resp., for instance by a Q-Q-plot or other
statistical procedures (see e.g. Pfeifer [5]). Denote the estimated cdf by F.
In risk management, one is often interested in larger Monte Carlo simula-
tions for P*, for instance for the estimation of a risk measure if X is one
out of several risks with a certain dependence structure.
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The general setup

We can assume that the X, can be represented as X, =Q(U;) with the

quantile function Q=F"" and independent standard uniform random
numbers U.. For a Monte Carlo study, we need to know Q or a good ap-

proximation of it, based on the given sample. Now let G be a (first of all)
arbitrary continuous and strictly increasing cdf with support /. Then obvi-

ously Q(u) =G '(G(Q(u))), 0 <u <1. Our idea is the following:
Approximate G(Q(u)) by a Bernstein polynomial B(u) in an appropriate
way on the basis of the given sample and use G”(B(u)), O<u<1 as ap-
proximate quantile function for the risk X. Note that G(Q(u)) is bounded
with G(Q(0))=0 and G(Q(1))=1.
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The general setup

From a statistical point of view, it might be wise to use an empirical esti-
mate G for the true underlying cdf F. Then the procedure is as follows:

1. Transform the observations according to Y, =G(X,,), k=1--,n

where X, denotes the k-th order statistic, and put Y, =0, Y, ,=1.

n+1

2. Calculate the corresponding (random) Bernstein polynomial, i.e.

n+1 n 1
BAU):zZ[ : Y u (1—u)""*,u=0,,1
k=0

and use G '(B,) as an approximation for the true underlying quantile

function F".
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The general setup

For an estimation of risk measures, for an arbitrary risk X, we can thus use

VaR.(X)=G' (B,(1—a)) with the risk level a €(0,1) (Value at risk)

and

1
ES.(X)=— [ G'(B,(u)du (Expected Shortfall)
o T-a
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Consistency

Note that the Y, :=G(X,,,), k=1,--,n can be considered as order statis-
tics Z,, from random variables Z, :=G(X,), k=1---,n. These are
bounded, hence their quantile function Qz(u):G(F”(u)), O<u<1 is

uniformly continuous. This means that the convergence of the empirical
qguantile functions pertaining to the 7z, =G(X,,) is uniform to Q,, cf.

prop. 5, p. 250 in Fristedt and Gray [7], the same being valid for the com-
pleted empirical quantile function by adding the values Z,:=0, Z, ,:=1.

Hence the random Bernstein polynomial converges almost surely (a.s.)
with limit Q, and hence G '(B,) converges a.s. to F ' with increasing

sample size, which implies consistency of the method proposed.
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Case Study

We consider the data given in Cottin and Pfeifer [6] with n=20. The fist
risk is assumed to be lognormally distributed, or, alternatively, the log
data X; are assumed to be normally distributed. We use the estimated lo-

cation and scale parameters /i (empirical mean of log data) and 5 (em-

pirical standard deviation of log data) for a normal cdf G with these pa-
rameters as in Cottin and Pfeifer [6].
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Case Study

Table 1. Log data and their transformations for the first risk in the above

Example.

X, | —2.765 | —1.483 | —0.853 | —0.759 | —0.392 | —0.200 | —0.194 | —0.144 | —0.041 | 0.169
G(Xh,) 0.005 | 0.076 | 0.195| 0.219| 0330 | 0395 | 0397 | 0414 | 0.451 | 0.527

X, | 0.182] 0.247 | 0351 ] 0438 | 0.666| 0.679| 0.713 | 1.088| 1907 | 2.298
G(Xk:,,) 0.531 | 0.555| 0.592| 0.622 | 0.697 | 0.701 | 0.712| 0.816 | 0950 | 0.977
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Case Study
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Figure 1. Graph of G-transformed empirical quantile function (red) and
corresponding Bernstein polynomial (blue)
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Case Study

With this approach, we get an approximate Value of Risk VaR, for a risk

level of a =0.005 of VaR. =24.558 while with the estimated lognormal
distribution from [6], we only get VaR, =18.911.
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Figure 2. Graph of empirical cdf (green), estimated lognormal cdf (red)
and G-transformed cdf (blue)
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Case Study

As can clearly be seen, the G-transformed cdf is closer to the empirical cdf
than the statistically estimated lognormal cdf.

Here we get ES. = 28.573 and with the G-transformation ES. = 34.392.

The second risk is assumed to be Fréchet distributed, or, alternatively, the
log data Y, are assumed to be Gumbel distributed. We use the estimated
. . e 6 . 6
location and scale parameters 4 and 6as f=m—~y—s and 6 =—s
m m
with Euler’s constant v=0.577216... and the empirical mean m and the

empirical standard deviation s for a Gumbel cdf G with these parameters.
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Case Study

Table 2. Log data and their transformations for the second risk in the
above Example.

—0.342 | -0.178 | -0.112 | -0.109 | —0.106 | —0.086 | —0.069 | —0.045 | —0.035 | 0.008
G(Yk:”) 0.039 | 0.182 | 0.268 | 0272 | 0.275| 0.305| 0.328 | 0363 | 0.378 | 0.439

k 11 12 13 14 15 16 17 18 19 20
Y., | 0040 0.063| 0074 | 0.112| 0.132| 0.150| 0.290 | 0.535| 0.810 | 0.985

G(YA_:H) 0.484 | 0.515| 0530 0577 0.602 | 0.624 | 0.761 | 0901 | 0.965| 0.982
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Case Study
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Figure 3. Graph of G-transformed empirical quantile function (red) and
corresponding Bernstein polynomial (blue)
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Case Study

With this approach, we get an approximate Value of Risk VaR, for a risk

level of a =0.005 of VaR. = 4.770 while with the estimated Fréchet dis-
tribution, we get only VaR. = 3.708.
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Figure 4. Graph of empirical cdf (green), estimated lognormal cdf (red)
and G-transformed cdf (blue)
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Case Study

As can again clearly be seen, the G-transformed cdf is closer to the em-
pirical cdf than the statistically estimated lognormal cdf.

Here we get ES. = 4.982 and with the G-transformation ES. = 6.865.
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Conclusions

Estimating underlying risk distributions and their Monte Carlo simulation
is an important task in risk management which sometimes leads to an
underestimation of the true risk measures if only standard statistical
methods are used. The approach which we suggest in this paper over-
comes the problem of estimating an appropriate tail behaviour of the
risk distributions, in particular if the underlying support is unbounded.
Practical examples from the insurance industry show that our method of-
ten gives higher estimates for risk measures than with standard statistical
methods, which is probably a desirable fact for a cautious estimation of
the overall risk of an insurance company especially under regulatory re-
quirements.
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