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geophysical and engineering aspects

Main Modelling Companies:

EQECAT, Inc. (ABS Consulting); founded 1981 Eﬂ:ﬂ[

AIR (Applied Insurance Research)
(Insurance Services Office, Inc. (1SO)); founded 1987

RMS (Risk Management Solutions, DMG Information);
founded 1988 [Stanford University]

Risk Management Solutions "
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aims and scopes:

e quantifying risk exposure under “natural’” conditions
e quantifying unobserved risk exposure (> earthquakes)
e optimization of re-insurance concepts

e implementation into “internal models” (5 DFA, Solvency II)
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Typical earthquake vulnerability curves for: 60%
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Source: [7], p. 21
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Source data

Modelling

Result
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Hazard Vulnerability Value Insurance
distribution conditions

The modelling software functions like a time-lapse camera. All events and resulting event

losses expected to occur over avery long period of time are calculated on the basis of
the data entered into the four modules.

Loss Loss frequency curve
amount

Occurrence frequency

Source: [7], p. 17
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The Collective Model of Risk Theory

Basic mathematical assumptions for this model:

e The number N of claims (losses) within a certain period is a non-negative, integer
valued random variable, called frequency.

e The individual claims (losses) occurring during this period, X,,X,,--, are sto-
chastically independent, identically (as X) distributed, positive random variables,
independent also from the frequency N.

The aggregate claim or aggregate loss (for the period under consideration) is given by

S=> X,.

N
k=1

12
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Assumptions: probability distributions for the claims (losses) are continuous with a
density function (df) f and a cumulative distribution function (cdf) F, given by

F(x)= ] f(u)du, x>0.
0
The corresponding survival function (sf) is given by
F(x)=1- F(x):j f(u)du, x>0.
Lemma 1. The cdf of the aggregate claim (loss) F is given by:

PS<2)=F(@2)=p,+Y_p,F"(2), 2>0.

n=1
Here p,:=P(N =n) for n=0,1,---,and F"™ denotes the n-fold convolution of F.

13
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Definition (generating functions). Let X be a real-valued random variable such that,
for some subset | C R, the expression

Uy (t)=E(e"), tel

remains finite for all t € I. The mapping 1, , defined on I, is then called the moment
generating function of X or of the distribution P*, resp.

The mapping defined by
0y (8) =1, (Ins) = E(sx), sce' ::{et Ite I}
is called the probability generating function of X or of the distribution P*, resp.

14
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Theorem 1. Let X be a real-valued random variable such that, for some subset | C R,
the moment generating function v, exists. Then the following holds true, under suit-
able conditions:

< E(x)

tk

a) " (0)=E(X"), keN and ¢y (t)=

t|<s

£ (0) o
X =P(X =k), kEN and ¢, (s)=> P(X=k)s*, |s|<1.
k=0

k!

b) Let X and Y be stochastically independent, real-valued random variables with
moment generating functions v, and 1/, then the random variable Z = X +Y

also possesses a moment generating function, which is given by

77ZJX+Y(t):wx (t)'¢v(t), tel.

15
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p* distribution P(X =k) @, () E(X) | Var(X)
r discrete uniform | 1 s s"—1 n+1 n’ —1
" (Laplace) n n os—1 2 12
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p* distribution density f(x) P, (1) E(X) | Var(X)
1 ebl o eat a b _ 2
Ula,b] continuous uniform , a<x<b thb | (b-ay
b—a t(th—a) 2 12
. Ca A 1 1
EN) exponential e ™™ x>0 AN _ _
A—t A :
anl «
T'(a,N) gamma A e ™, x>0 A a %
I'(a) At A A
1 X _ 2 O_th
N(u, 02) normal exp [— ( f) ] exp|——+put| | K o2
270 o
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Theorem 2. If the probability generating function ¢, (S) of the frequency exists for

0<s<mn with n>1 and the moment generating function 1, (t) of individual claim
sizes X exists for 0 <t < 6 with some 6 > 0, then

s () =y (1 D), tel,

where | is a suitable interval, containing zero, with the property that v, (1) C[0,7).
For a discrete claim size X with values in N, there also holds

es (1) =y (px (1)), tee U[o,1].

In particular, all (absolute) moments of the aggregate claim (loss) S exist, and there
holds

E(S)=E(N)-E(X), Var(S) = E(N)~Var(X)+Var(N)'{E(X)}2.

18
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Discretization:

X, =

%}:min{kEI\HkAZX}

with A > 0, and with probabilities

X
P(X, =k)= PHZ

:k]:P[k1<§§ k]: F(KA)—F ((k—1A), keN,

— "aggregate claim (loss)" S, has the probability generating function

@5, () =y (94, (9)) |8 <1.

(= Panjer-recursion, FFT, series expansion, ...)
19
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Model Output

The general data basis for the geophysical modelling software are the so-called Event
Sets, consisting, among others, of historical data like wind speed, wind direction,
flooding levels, earthquake magnitudes etc. By random permutation of the physical
parameters, these sets can be artificially enlarged, resulting in the so-called Stochastic
Event Sets. Such sets can easily have up to 50000 entries and more.

When applied to a particular portfolio analysis, only those entries of these (stochastic)
event sets are selected which refer directly to the portfolio under consideration, e.g. by
looking at zip codes of the locations. A typical output is then given through a table like
this one, called Event Loss Table:

20



THEMATIN: UND
NATURWISSENSCHAFTEN

Analysis Name

Insurance risk management for catastrophic events

Dietmar Peifer

mathematical aspects

IScenario| Modelled Loss |Standard Deviation|

Exposed SI

AON

Rate |

Example Wind Analysis 3656 1,940,550,920 36,794,128 68,947,100,000 0.0000062953
BExample Wind Analysis 3968 1,563,781,833 49,352,347 95,221,396,000 0.0000129744
Example Wind Analysis 7264 1.482,396,982 41,468,066 69,668,353,333 0.0000113048
Example ¥Vind Analysis 7219 1,461,229,040 43,029,488 72,023,880,000 0.0000113048
Example ¥Wind Analysis 3665 1,431,950,171 47,062,942 73,402,510,667 0.0000047371
Example Wind Analysis 1222 1,332,616,058 40,221,122 78,780,377,333 0.0000113048
Example Wind Analysis 6283 1,169,279,403 35,124,601 74,784,286,000 0.0000468744

Mathematically speaking, the Event Loss Table contains a Collective Risk Model of
its own in each row (i.e., for each scenario), where each frequency is of Poisson type
and the claims (losses) are deterministic in the basic case, and are endowed with stan-
dard deviations in the extended case.

21
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Notation:

Nn: number of scenarios in the Event Loss Table ( = number of rows)

N,,N,,---,N, : the row-wise frequencies

1o NS,

X, 1<i<n, jeN: the individual claim sizes, same distribution Q,.

ij>

Note that in the basic Event Loss Table, these distributions are Dirac distributions.
Then:

S;:=> X, i=L---,n (Scenario Loss)

S=>5=> > X, (Agdgregate Loss).

22
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Theorem 3. Let N,N,,---,N,_ be stochastically independent, Poisson distributed ran-

dom variables (frequencies) with parameters A,\,,---,A >0, and X;, 1<i<n,

j € N be independent, positive random variables (claims, losses), independent also of
the frequencies, such that all X, follow the same distribution Q,. Then the distribu-

n Ni
tion of S = ZZ X;; 1s identical with the aggregate claims distribution for the loss

i=1 j=1

N
S given by S = Z X, from a single Collective Risk Model where N is a Poisson
k=1

distributed frequency with parameter \ = Z)‘i and the )Zi are independent (also of

i=1

N), with mixture distribution Q = Z%Qi.
i=1

23
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Typical Loss:

mm{NJ}X 0, if N=0
X,, if N>0

Lemma 2. Under the assumptions of Theorem 3, the Typical Loss distribution is given
by the mixture

Pt =e ¢, +(1—e*X)Q —eg, +(1—eX)Z%Qi, with X=>"\.
i=l1 i=l1
The corresponding cdf has the form

F(z)=P(L<7)=¢" +(1e*‘)i%ﬁ(z):e*~ +(1—e’x)lf(z), 2> 0.

24
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Lemma 3. In the classical Collective Risk Model, let
M :=max {X; [I<i <N}

denote the Maximum Loss. We then have:

P(M <2)=F, ()= p, F"(2), 2>0,

where as above, p, .= P(N =n) for n=0,1,---.

Remark: For the Poisson model, i.e. P =7P(\) with A >0 this means:

o]

PMM<2)=F,()=)_p,F'@)=¢"Y >F'(2)
n=0 n=0 n!
— e exp {)\ F(Z)} _ o M-F@} _ MF@-1} Oy (F(Z)), 7>0.

25
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Lemma 4. Under the conditions of Theorem 3, let
M :=max{X; [1<j< N, 1<i<n}

denote the Occurrence Loss. Then the cdf of M is given by

n

P(M <2)= exp{—Z[Ai {1- Fi(z)}]}: exp{—X[1— lf(z)]}, 2>0,

i=1

with F(z)= Z% F.(2), 2>0.
i=1

26
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We shall now present explicit formulas for calculating the cumulative distribution
functions (cdf’s) and the survival functions (sf’s) of the Typical Loss, the Occurrence
Loss and the Aggregate Loss for a basic Event Loss Table. Note that the sf’s of the
Occurrence Loss and the Aggregate Loss are usually denoted as OEP curve (Occurence
Loss Exceeding Probability) and AEP curve (Aggregate Loss Exceeding Probability).

Since in the basic Event Loss Table, all scenario losses w; are deterministic, we can
assume that they are ordered according to size:

w, <w, << w,.
This can always be achieved by a proper sorting of the rows in the Event Loss Table.

In particular, this ordering implies

0, ifi>Kk .
F(w,)= 1 ) forall 1<i,k<n.
I, if i<k,

27
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For the superposed model, we thus obtain

n k
P(X ka>:ﬁ(wk)zz%ﬁ(wk):z%, k=1,--,n and
i=l1 i=1
v = SN A
P(X>wm,)=1 F(wk)zl—;y:bkﬂy,kzl, N,
or, more generally,
- - "o\ Ko
P(X<z)=F(z)= T'Fi(z):ZT',wkgxwkH, k=1,--,n and
i=l1 i=l1
_ B k )\I n )\I
P(X>Z):1_F(Z>:1_ZY: T) wk§2<wk+1, k 19 :nv
i=l1 i=k+1

28
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Lemmabs:

AON

n

P(L>z):l—e’*'—(l—e’i)lf(z):(l_e”)Zi;,

i=k+1

P(M >z)=1—exp{-A[l— ﬁ(z)]}:l—exp{—zﬂ: A
-X BLS ):k =
PS>z)=1-¢"—¢e ZFF (2),

z>0

w, <z<w,, (TEP-curve)

}, w, <z<w,  (OEP-curve)

(AEP - curve)

Here TEP refers to Typical Loss Exceeding Probability.

29
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The following graph shows these three curves for an artificial example with 300 sce-
narios and \=2,465 The maximum observed individual loss was here given by
Wy = 489909. For the calculation of the AEP-curve, a discretization with step size
A =2500 was chosen.

AEP-curve = red. OEP-curve = blue, TEP-curve = green

0.14
1 ——
0" 5pp00 150000 250000 350000 450000 550000 650000
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%

Flgure 12 Companng an aggregte loss exceedlng probab|||ty
(AEP) curve and an occurrence exceeding probability curve.

Source: [3], p. 18
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Concerning the Extended Event Loss Table, where also standard deviations are given,
we can proceed completely similar if the type of the individual claim size (loss) distri-
bution is known. Suppose that we can consider Modelled Loss as location parameter
>0 and Standard Deviation as scale parameter o > 0 for an appropriate class of dis-
tributions (like lognormal, gamma, Fréchet, Pareto etc.), then the basic formulas in
Lemma 8 remain valid, i.e. we still have, for z >0,

P(L> z):(l—e*X)(l—lf(z)) (TEP-curve)

P(M >2)= 1—exp{—X[1— lf(z)]} (OEP -curve)

- o n vk y
PS>z)=1-¢"*—e % F“(z)  (AEP-curve)

k=1

32
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The following graph shows the corresponding result for the analysis of the virtual
Extended Event Loss Table related to the preceding example where we assume that the
individual losses are exponentially distributed, with scenario parameters mean = stan-
dard deviation = 1 / modelled loss, i.e.

FO=Y3F,, @=1-) 3", 220
i=l1

i=1

where 9, is the modelled loss from scenario i. The dotted curves are those from the

preceding graph.

33



“ ar Dl AoN
muLD[NIHRG Dlefmﬂrpﬁlfr
FAKULTAT ¥

MATHEMATIN: UND . .
NATURWISSENSCHAFTEN Insurance risk management for catastrophic events

mathematical aspects

AEP-curve = red, OEP-curve = blue, TEP-curve = green

50000 100

000 200000 250000 300000 350000 400000 450000 500000

000 150
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Risk Exposure Windstorm Germany

losses (in €)

= = 1.000.000.000
5.000.000.0600
10.000,000,000
50,000.000,000
100.000.000.020
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Source: Munich Re
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claims development, windstorm Germany

== original claims
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Q-Q Plot
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Created with ExpertFit 6.00

38



Dietmar Peifer

umiversitat [oLDEN
FA A

BURG
TV

Insurance risk management for catastrophic events

case studies

Density/Histogram Overplot
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Q-Q Plot for Log claims windstorm, Gumbel distribution (red)
blue: ML-estimate
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difficulties of proprietary models vs. actuarial approach

e frequently no good fit of models with data (5> small return periods)
e Poisson model not always appropriate (5 frequency negative binomial?)
o little possibilities for simulation of individual claims (5 XL treaties)

e models good for VaR, less for ES

e mainly modelling of only individual risks (5> DFA, Solvency II)

42
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. Scatterplot Scatterplot
- original random variables, Frank copula Poisson random variables, Frank copula
v I [ 35 -
09 '
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0,7
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>05 o
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03 -
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| 0,0 . .
0,1/ -
ou =Y -0.5 ...........
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Example for copula-based construction of Poisson processes; source: [10] 8



Dietmar Peifer AoN

OLDENBURG
FAKULTAT ¥
MATHEMATIE
NATURWISSE

WD

Insurance risk management for catastrophic events

case studies

Source: Munich Re
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Source: Swiss Re
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Example insurance company (private property):

empirical copula {scatterpiot) wirical copula empinical copula (scatterplot)

00 0z 04 08 ng 10 00 02 04 [ 08 10 0o 02 04 08 [ 10
windstorm flocding windstorm

correlation matrix for Gauss (??) copula with windstorm / hailstorm / flooding:
(marginal distributions: Fréchet / Lognormal / Lognormal)

1 0,2226  0,3782 1 0 0
3 =10,2226 1 0,3341|= AA", A=[0,2226 0,9749 0
0,3782 0,3341 1 0,3782 0,2563 0,8895
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problem: total claims distribution is distribution of sums of dependent random variables
with different types of marginal distributions!

5 use mixture distribution
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The hard market phase in the early nineties was triggered by the severe loss bur-
den resulting from hurricane Andrew and several winter storms in Europe.

Two factors should be noted here: on the one hand, losses erode the reinsurers’
capital base, meaning that less capital is available to underwrite reinsurance cov-
ers; on the other, the demand for such covers increases as a catastrophe makes
both direct insurers and insureds aware of the risks to which they are exposed.
Further, their own capital base has been reduced and the necessity to minimise
risks is therefore all the more acute.

Source: Swiss Re

The End
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