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EQECAT, Inc. (ABS Consulting); founded 1981       
 

 
 

AIR (Applied Insurance Research)  
(Insurance Services Office, Inc. (ISO)); founded 1987   
 
 
RMS (Risk Management Solutions, DMG Information); 
founded 1988 [Stanford University] 
 
 



                   Dietmar Pfeifer      

                 Insurance risk management for catastrophic events 

 7 

            geophysical and engineering aspects 

 
 
aims and scopes: 
 
 
• quantifying risk exposure under “natural” conditions 
 
• quantifying unobserved risk exposure (  earthquakes)   
 
• optimization of re-insurance concepts 
 
• implementation into “internal models” (  DFA, Solvency II)   
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Source: [4], p. 40 
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Source: [5], p. 276  
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Source: [7], p. 21 
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Source: [7], p. 17 
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The Collective Model of Risk Theory 
 
Basic mathematical assumptions for this model:  

• The number N of claims (losses) within a certain period is a non-negative, integer 
valued random variable, called frequency. 

 
• The individual claims (losses) occurring during this period, , are sto-

chastically independent, identically (as )
1 2, ,X X "

X  distributed, positive random variables, 
independent also from the frequency N.  

 
The aggregate claim or aggregate loss (for the period under consideration) is given by 
 

1

: .
N

k
k

S X
=

=∑  
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Assumptions: probability distributions for the claims (losses) are continuous with a 
density function (df) f and a cumulative distribution function (cdf) F, given by 

0

( ) ( ) , 0
x

F x f u du x= ≥∫ .  

 

The corresponding survival function (sf) is given by 
 

 13 

( ) : 1 ( ) ( ) , 0
x

F x F x f u du x
∞

= − = ≥∫ .  

 
Lemma 1. The cdf of the aggregate claim (loss)  is given by: SF

( ), 0n
S n

n

P S z F z p p F z z
∞

∗

=

≤ = = + ≥∑

n

 

0
1

( ) ( ) .  

 

Here : ( )p P N= = n= nF ∗n  for , and  denotes the n-fold convolution of F.  0,1,"
 

 



                   Dietmar Pfeifer      

                 Insurance risk management for catastrophic events 

                        mathematical aspects 

 
 

Definition (generating functions). Let X be a real-valued random variable such that, 
for some subset ,I ⊆\  the expression 
 

( )( ) :X t Eψ = ,tXe t I∈

t ∈ ,Xψ
,XP

,XP

 
 
remains finite for all .I  The mapping  defined on I, is then called the moment 
generating function of X or of the distribution  resp. 
 

The mapping defined by 
 

( ) { }( ) : (ln ) , : |X I t
X Xs s E s s e e t Iϕ ψ= = ∈ = ∈  

 
is called the probability generating function of X or of the distribution  resp. 
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Theorem 1. Let X be a real-valued random variable such that, for some subset  
the moment generating function  exists. Then the following holds true, under suit-
able conditions: 

,I ⊆\
Xψ

( )
a) ( )( )

0

(0) , and ( )k k
X X

k

E X k tψ ψ
∞

=

= ∈ =∑` ,
!

k
k

E X
t t

k
δ≤  

0

( ) (0) ( ), and ( ) ( )
!

X
X

k

k
P X k k s P

k
ϕ ϕ

∞

=

= = ∈ = =∑` , 1.kX k s s ≤

X Y

 

 
b) Let X and Y be stochastically independent, real-valued random variables with  

moment generating functions ψ  and ,ψ  then the random variable Z X Y= +  
also possesses a moment generating function, which is given by 

 
( ) ( ) ( ),X Y X Yt t t t Iψ ψ ψ+ = ⋅ ∈ .  
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Examples for discrete distributions: 
 

XP  distribution ( )P X k= ( )X sϕ  ( )E X ( )Var X  

n

1

2

n+1

n
 

1

1

n −

−

s s

n s
⋅  

2 1

12

n −L  discrete uniform
(Laplace)   

( , )  n pB (1k n
n

p p
k

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠ − np (1 )np p−binomial ) k−−  (1 )np ps+    

( , )pβNB k
k

k

β + −⎛ ⎞⎜⎜⎜⎝ ⎠
 negative  

binomial 
1

(1 )p pβ −⎟⎟⎟⎟ 1 (

β

− −

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
1 p

p
β

−
2

1 p

p
β

−

1 )

p

p s
  

( )  λP Poisson 
!

k

e
k

λ λ− ( 1seλ − λ λ )    
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Examples for continuous distributions: 
 

 17 

XP  distribution density )  (f x ( )E X ( )Var X( )X tψ    

[ , ]
2( )

12

b a−a bU  continuous uniform 
1

, a x
b a

≤ ≤
−

b  
( )

bt ate e

t b a

−

− 2

a b+
   

( )  λE , 0x xe λ− ≥exponential λ  
t

λ

λ−

1

λ 2

1

λ
   

( , )  α λΓ gamma 
1

( )

x
e x

α
α λλ

α

−
−

Γ
, 0x >  

t

α
λ

λ−

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠
α

λ 2

α

λ
   

2µ σ( , )N  normal 
2

2

)

2

x µ

σ

−
−
⎛ ⎞⎟⎜ ⎟⎜ ⎟⎟⎜⎝2

1 (
exp

2πσ ⎠
 

2 2

exp
2

t
t

σ
µ+

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠
µ  2σ  
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Theorem 2. If the probability generating function  of the frequency exists for 

 with  and the moment generating function  of individual claim 
sizes X exists for t δ<  with some 0,δ>  then 

( )N sϕ
η 1η> ( )X tψ

≤
0 s≤ <

0
 

( )( )S Nt t( ) , ,X Iψ ϕ ψ= ∈t  
 
where I  is a suitable interval, containing zero, with the property that .  
For a discrete claim size X with values in ,`  there also holds 

( ) [0, )X Iψ η⊆

{ }2( ) ( )E S E N E X Var S E N Var X Var N E X= ⋅ = ⋅ + ⋅

 

( )( ) ( ) , [0,1].I
S N Xt t t eϕ ϕ ϕ= ∈ ∪  

 
In particular, all (absolute) moments of the aggregate claim (loss) S exist, and there 
holds 
 

( ) ( ) ( ), ( ) ( ) ( ) .  
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Discretization: 
 

{ }: minX |X k k X∆

⎡ ⎤
⎢ ⎥= = ∈ ∆≥
⎢ ⎥∆⎢ ⎥

`

0,

 

 
with  and with probabilities ∆>
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( ) ( )( ) 1 ( 1) , .X XP X k P k P k k F k F k k∆

⎛ ⎞⎡ ⎤ ⎛ ⎞⎟⎜ ⎟⎜⎢ ⎥= = = = − < ≤ = ∆ − − ∆ ∈⎟ ⎟⎜ ⎜⎟ ⎟⎜⎜ ⎟⎢ ⎥ ⎝ ⎠∆ ∆⎝ ⎠⎢ ⎥
`  

 

→ "aggregate claim (loss)"  has the probability generating function S∆

 

( )( )S N Xsϕ ϕ ϕ
∆ ∆
= ( ) , 1.s s ≤    

 
(  Panjer-recursion, FFT, series expansion, …) 
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Model Output 
 
The general data basis for the geophysical modelling software are the so-called Event 
Sets, consisting, among others, of historical data like wind speed, wind direction, 
flooding levels, earthquake magnitudes etc. By random permutation of the physical 
parameters, these sets can be artificially enlarged, resulting in the so-called Stochastic 
Event Sets. Such sets can easily have up to 50000 entries and more. 
 
When applied to a particular portfolio analysis, only those entries of these (stochastic) 
event sets are selected which refer directly to the portfolio under consideration, e.g. by 
looking at zip codes of the locations. A typical output is then given through a table like 
this one, called Event Loss Table: 
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Mathematically speaking, the Event Loss Table contains a Collective Risk Model of 
its own in each row (i.e., for each scenario), where each frequency is of Poisson type 
and the claims (losses) are deterministic in the basic case, and are endowed with stan-
dard deviations in the extended case.  
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Notation: 
 
n: number of scenarios in the Event Loss Table ( = number of rows)  
 

1 2, , ,N N " nN

.iQ

)

.

cenario Loss

gate Loss

: the row-wise frequencies  
 

, 1 ,ijX i n j≤ ≤ ∈` :  the individual claim sizes, same distribution   
 
Note that in the basic Event Loss Table, these distributions are Dirac distributions. 
Then: 
 

1

1 1 1

(

( )

: , 1, ,    

:     

i

i

N

i ij
j

Nn n

i ij
i i j

S X i n

S S

S

AggreX

=

= = =

= =

= =

∑

∑ ∑∑

"
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Theorem 3. Let  be stochastically independent, Poisson distributed ran-
dom variables (frequencies) with parameters ,  and ,

1 2, ,N N , nN"

1 2, , nλ λ λ >" , 1ij, 0 X i n≤ ≤

i

 
 be independent, positive random variables (claims, losses), independent also of 

the frequencies, such that all 
j ∈`

X i i

iN

i j

S
= =

=∑∑

1

N

k
k=

=∑
�

� � N�

=� i

 follow the same distribution Q . Then the distribu-

tion of X  is identical with the aggregate claims distribution for the loss 

 given by X  from a single Collective Risk Model where  is a Poisson 

distributed frequency with parameter  λ  and the 

1 1

:
n

ij

S� :S

1

n

i
i

λ
=
∑ X�

)

 are  independent (also of 

, with mixture distribution N�
1

.
n

i
i

λ
λ=
�

i

Q Q=∑�  
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Typical Loss: 

{ }min ,1

1

:
1

0, if  0
, if  

N

k
k

N
L X

X N=

⎧ =⎪⎪= =⎨⎪ >⎪⎩
∑ �

� 0
 

 
 
Lemma 2. Under the assumptions of Theorem 3, the Typical Loss distribution is given 
by the mixture 
 

( ) ( )0 01 1 ,L
iP e e Q e eλ λ λ λε ε− − − −= + − = + −� � ��

1

.
n

i
i

λ λ
=

=∑�
1

n
i

i

Qλ
λ=

∑�

�   with  

 
The corresponding cdf has the form 
 

( )

 24 

( )
1

( ) ( ) 1 ( ) 1 ( ), 0
n

i
L i

i

F z P L z e e F z e e F z zλ λ λ λλ
λ

− − − −

=

= ≤ = + − = + − ≥∑� � � � �
� .  
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Lemma 3. In the classical Collective Risk Model, let  
 

{ }: max |1iM X i= ≤ ≤

(n

N  
 

denote the  Maximum Loss. We then have: 
 

0

( ) ( ) ( ), 0n
M n

n

P M z F z p F z z
∞

=

≤ = = ≥∑ ,  
 

where as above, : )p P N= 0, ,n= "

( )NP λ 0λ>

n=  for . 1
 

Remark: For the Poisson model, i.e.  with  this means: =P
 

{ } { } { }
0 0

1 ( ) ( ) 1

( ) ( ) ( ) ( )
!

exp ( )

n
n n

M n
n n

F z F z

P M z F z p F z e F z
n

e F z e e

λ

λ λλ

λ

λ ϕ

∞ ∞
−

= =

− − −−

≤ = = =

= = = =

∑ ∑
( )( ) , 0.N F z z ≥
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Lemma 4. Under the conditions of Theorem 3, let  
 

{ }: max |1ij , 1iM X j= ≤ ≤ N i n≤ ≤  
 

denote the Occurrence Loss. Then the cdf of M is given by  
 

{ } { }
1

( ) exp 1 ( ) exp 1 ( ) , 0,
n

i i
i

P M z F z F z zλ λ
=

⎧ ⎫⎪ ⎪⎪ ⎪ ⎡ ⎤⎡ ⎤≤ = − − = − − ≥⎨ ⎬ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎪ ⎪⎪ ⎪⎩ ⎭
∑ � �  
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with 
1

( ) ( ), 0.
n

i
i

i

F z F z zλ
λ=

= ≥∑�
�  
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We shall now present explicit formulas for calculating the cumulative distribution 
functions (cdf’s) and the survival functions (sf’s) of the Typical Loss, the Occurrence 
Loss and the Aggregate Loss for a basic Event Loss Table. Note that the sf’s of the 
Occurrence Loss and the Aggregate Loss are usually denoted as OEP curve (Occurence 
Loss Exceeding Probability) and AEP curve (Aggregate Loss Exceeding Probability). 
 

Since in the basic Event Loss Table, all scenario losses  are deterministic, we can 
assume that they are ordered according to size:  

iϖ

.nϖ≤"
 

1 2ϖ ϖ≤ ≤  
 

This can always be achieved by a proper sorting of the rows in the Event Loss Table. 
In particular, this ordering implies 
 

0, if  
( ) for all   1 , .

1, if  ,i k

i k
F i k n

i k
ϖ

⎧ >⎪⎪= ≤ ≤⎨⎪ ≤⎪⎩
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For the superposed model, we thus obtain 

( ) ( )

( ) ( )

1 1

1 1

( )

1 1

n k
i i

k k i k
i i

k n
i i

k k
i i k

P X F F

P X F

λ λϖ ϖ ϖ
λ λ

λ λϖ ϖ
λ λ

= =

= = +

≤ = = =

> = − = − = =

∑ ∑

∑ ∑

� �
� �

� �
� �

, 1, , and

, 1, , ,

k n

k n

= "

"
 

 
or, more generally, 
 

( ) ( )

( ) ( )

1
1 1

1
1 1

( ) , , 1, , and

1 1 , , 1, , ,

n k
i i

i k k
i i

k n
i i

k k
i i k

P X z F z F z z k n

P X z F z z k n

λ λ ϖ ϖ
λ λ

λ λ ϖ ϖ
λ λ

+
= =

+
= = +

≤ = = = ≤ < =

> = − = − = ≤ < =

∑ ∑

∑ ∑

� � "� �

� � "� �

 

 
with  1 : .nϖ + =∞
 28 
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Lemma 5:  

 

( ) ( )

[ ]{ } { } 1
1

( ) 1 exp 1 ( ) 1 exp ,
n

i k
i k

P M z F z zλ λ ϖ +
= +

> = − − − = − − ≤ <∑� � -

1
1

1

( ) 1 ( )

( ) 1 1 ( ) 1

,

,

0
!

k

n
i

k k
i

n

k

k

k

k

P S z e e F z

P L z e e F z e z

z
k

λ λ

λ λ λ

λ

λ
ϖ ϖ

λ

ϖ

− − ∗

=

− − −

+
= +

> = − − −

> = − −

= ≤

≥

− <∑

∑

�

� �

� �

�

�

�

� (TEP - curve)

(OEP curve)

(AEP - curve)

 

 
Here TEP refers to Typical Loss Exceeding Probability. 
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The following graph shows these three curves for an artificial example with 300 sce-
narios and 2,465 The maximum observed individual loss was here given by 

 For the calculation of the AEP-curve, a discretization with step size 
 was chosen.  

λ=�

300 489909.ϖ =
2500∆=
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Source: [3], p. 18  
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Concerning the Extended Event Loss Table, where also standard deviations are given, 
we can proceed completely similar if the type of the individual claim size (loss) distri-
bution is known. Suppose that we can consider Modelled Loss as location parameter 

0µ>  and Standard Deviation as scale parameter 0σ>  for an appropriate class of dis-
tributions (like lognormal, gamma, Fréchet, Pareto etc.), then the basic formulas in 
Lemma 8 remain valid, i.e. we still have, for 0,z ≥  
 

( )( )
{ }

1

( ) 1 1

( ) 1 (
!

)

)

(

kn
k

k

P S z

P

e e

L z e F z

F z
k

λ λ

λ

λ−

−

− ∗

=

> = −

> = − −

− ∑

�

� �

�

� �

(TEP -curve)

P -curve)

(AEP -curve)

( ) 1 exp 1 ( )P M z F zλ ⎡ ⎤> = − − −⎢ ⎥⎣ ⎦
� � (OE  

 

 32 



                   Dietmar Pfeifer      

                 Insurance risk management for catastrophic events 

                        mathematical aspects 

 

The following graph shows the corresponding result for the analysis of the virtual  
Extended Event Loss Table related to the preceding example where we assume that the 
individual losses are exponentially distributed, with scenario parameters mean = stan-
dard deviation = 1 / modelled loss, i.e. 

 

,
1 1

( ) ( ) 1 , 0i

i i

n n
zi i

i i

F z F z e zϑ
µ σ

λ λ
λ λ

−

= =

= = − ≥∑ ∑�
� �

iϑ

,  

 

where  is the modelled loss from scenario i.  The dotted curves are those from the 
preceding graph. 
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                        Source: Munich Re 
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Created with ExpertFit 6.00 
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model for original claims: inverted Weibull (Fréchet) 
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Inverted Weibull (Fréchet)

0.01 6.8 bVaR ≈ illion €                    

 

 

0.01 14.7  bilES ≈ lion €
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difficulties of proprietary models vs. actuarial approach 
 
 
 

• frequently no good fit of models with data (  small return periods) 
 

• Poisson model not always appropriate (  frequency negative binomial?) 
 

• little possibilities for simulation of individual claims (  XL treaties) 
 

• models  good for VaR, less for ES 
 

• inappropriate modelling of dependencies (  copulas?) 
 

• mainly modelling of only individual risks (  DFA, Solvency II) 
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 43 Example for copula-based construction of Poi cesses; source: [10] 
sson pro
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                           Source: Munich Re 
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                                Source: Swiss Re 
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Example insurance company (private property): 
       

 

   
 
 

correlation matrix for Gauss (??) copula with windstorm / hailstorm / flooding: 
                                                                 (marginal distributions: Fréchet / Lognormal / Lognormal)    
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1 0,2226 0,3782

0,2226 1 0,3341

0,3782 0,3341 1

, 0, 222

0, 3782

trA A AΣ= = =

⎡ 1 0 0

6 0, 9749 0

0, 2563 0,8895

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣

⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦ ⎦
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problem: total claims distribution is distribution of sums of dependent random variables  
with different types of marginal distributions! 

 
  use mixture distribution 
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Source: Swiss Re 

 
    
 
 

The End         
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