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1. Motivation 
 

Commission Delegated Regulation (EU) Article 306:  
Own-Risk and Solvency Assessment Supervisory Report  
 

The ORSA supervisory report shall present all of the following:  
 

(a) the qualitative and quantitative results of the own risk and solvency 
assessment and the conclusions drawn by the insurance or reinsurance 
undertaking from those results;  

(b) the methods and main assumptions used in the own risk and solvency 
assessment;  

(c) information on the undertaking's overall solvency needs and a com-
parison between those solvency needs, the regulatory capital re-
quirements and the undertaking's own funds;  

(d) qualitative information on, and where significant deviations have 
been identified, a quantification of the extent to which quantifiable 
risks of the undertakings are not reflected in the calculation of the 
Solvency Capital Requirement. 
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1. Motivation 
 

With this presentation, we refer in particular to aspects (b) and (d) in the 

Delegated Regulation in order to make a visual check about the distribu-
tional assumptions in Pillar I of Solvency II via Q-Q-plots mathematically 
more rigorous. 
 

The concrete background for this investigation is a controversial corre-

spondence with the German regulator BaFin concerning the reliability of 
visual Q-Q-plots in the ORSA. So we will here mainly concentrate on Q-Q-
plots for normally distributed random variables, since lognormal risks (as 
assumed in pillar I of Solvency II for combined ratios) can be transformed to 

normal risks by applying logarithms. 
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2. Q-Q-Plots in Location-Scale Families 
 

Formal framework: We consider risks X of the form m s= +X Z  where Z 

denotes a standard risk with a continuous, strictly increasing cdf ZF  (loca-

tion-scale family), with m Î  and s> 0.  -= 1
Z ZQ F  defines the correspond-

ing standard quantile function. Then m s= + .X ZQ Q   
 

Let in general ( )kY  denote the k-largest order statistic in a series of n i.i.d. 

observations 1, , .nY Y  A quantile-quantile-plot in a location-scale family 

(Q-Q-plot) is a scatterplot of the points ( )( )( ), ,Z k kQ u X  = 1, ,k n  for n i.i.d. 

observations 1, , nX X  distributed as X where < < < <10 1nu u  are cho-

sen appropriately (so called “plotting positions”). 
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2. Q-Q-Plots in Location-Scale Families  
 

In case that the data are actually replicates of X, the Q-Q-plot should ap-
proximately show a linear structure. This is due to the fact that if we gen-
erate the replicates of the risk X via m s= +: ( ),k Z kX Q U  = 1, ,k n  where 

1, , nU U  are standard uniform random numbers, then the points  

( )( ) ( )( ),Z k kQ U X  are laying precisely on a straight line with slope s  and in-

tercept m.   

This is historically the basis for a visual test (“probability paper”) whether 
the distributional assumptions on the risk X are justified or not (see Gum-
bel (1958) or David and Nagaraja (2003) for a survey). 
 

If the points ( )( )( ),Z k kQ u X  deviate „significantly“ by eye from a straight 

line the distributional assumptions on the risk X should be rejected. 
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2. Q-Q-Plots in Location-Scale Families  
 

The empirical slope ŝ  and intercept m̂  for the corresponding regression 

line are given by 
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2. Q-Q-Plots in Location-Scale Families 
 

Proposition: ŝ  and m̂  from the Q-Q-plot are unbiased estimators for the 

scale and location parameters s  and m  if we choose ( )( )= ( )k Z ku F E Z  for 

= 1, , .k n   
 

Formally, we have 
 

( ) ( )
¥
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( ) ( ) 1 ( ) ( )
n kk

k Z Z Z

n
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which in general cannot be calculated explicitly. For the particular case of a 

normally distributed standard risk Z, Harter (1961) has published extensive 
numerical tables.  
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2. Q-Q-Plots in Location-Scale Families 
 

Historically, the plotting positions ku  for a normal Q-Q-plot have been de-

scribed in the form 
-

=
+

,k

k a
u

n b
 = 1, ,k n  with >, 0a b  which is independ-

ent of n. This is -  in general - only a crude approximation. Here is a histori-
cal list of suggestions: 
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2. Q-Q-Plots in Location-Scale Families 
 
 

Hazen (1914) 
-
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k
u

n
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+1k
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u

n
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-
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2. Q-Q-Plots in Location-Scale Families 
 

As has been shown by Pfeifer (2019) a much better approximation is given 

by the choice  
-

=
+

ˆ
,

ˆ
n

k

n
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u
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The following graph shows a comparison of the approximate >ˆˆ , 0n na b  

with the true values of >, 0.n na b   
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2. Q-Q-Plots in Location-Scale Families 

     
                            na  vs. ˆna                                                    nb  vs. ˆ

nb  
 

Asymptotically, we have 
¥

=ˆlim 0,413392nn
a  and 

¥
=ˆlim 0,172730nn

b  which is 

close to Gringorten’s (1963) suggestion. 

ˆna

n̂b

nb

na
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3. A Correlation-based GoF Test with Q-Q-Plots 

Here we use a slight modification of a test procedure suggested by Lock-
hard and Stephens (1998). As a test statistic T for the simple significance 

goodness-of-fit test we use r=- -ln(1 )T  where r  is the empirical correla-

tion coefficient between the ( )Z kQ u  and the ( ) ,kX  with the plotting posi-

tions ku  above. Note that the correlation coefficient is independent of the 

true location and scale parameters m  and s.  By a larger Monte Carlo study 

(Pfeifer (2019)) is has turned out that the distribution of T in the normal 
model is itself approximately normally distributed under the null hypothe-

sis with mean mT  and standard deviation sT , for ³10.n  The following 

graphs show some histograms of simulated T-values in comparison with a 

normal density. The simulation size was 1 Mio. observations. 
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3. A Correlation-based GoF Test with Q-Q-Plots 
 

                   
                         m s == 3,5727; 0,6201TT                    m s == ;3,6219 0,6103T T  
                

                   
                          m s= =;3,6696 0,6005                        m s= =;3,7152 0,5935  

= 11n = 12n

= 13n = 14n
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3. A Correlation-based GoF Test with Q-Q-Plots 

               
                          m s == ;3,7584 0,5873T T                  m s == ;3,7998 0,5813T T  

               
                          m s == ;3,8385 0,5767T T                   m s == 3,8773; 0,5730TT  

= 15n = 16n

= 17n = 18n
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3. A Correlation-based GoF Test with Q-Q-Plots 

A good numerical approximation to mT  and sT  in the range = 10, ,50n  is  
 

m
+

=
+

5,87383 101,011
ˆ

35,3404T

n
n

    and    s +
=

+
0,477812 3,25495

.ˆ
2,72721T

n
n

 

        

The p-value for the correlation test can hence be calculated approxi-

mately by the formula 
m

s

æ ö- ÷ç ÷Fç ÷ç ÷çè ø
ˆ

ˆ
T

T

T
 with the standard normal cdf F.   

The following graphs show the test selectivity between a normal and a 
Gumbel, and a normal and a logistic distribution model, for = 20.n  The 
plots represent histograms of the T distribution under the three different 

models with the same normal ( )Z kQ u . We also show a table with corre-

sponding errors of second kind b( )  versus errors of first kind a( ).   
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3. A Correlation-based GoF Test with Q-Q-Plots 

      

a  1% 5% 10% 
critical T-value 2,6180 3,0045 3,2159 
b  Gumbel 84,70% 69,31% 59,11%
b  logistic 94,92% 86,73% 78,84%
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4. A Case Study from the German Insurance Market  
 

The following analysis is based on statistical data for gross combined ra-
tios from past years from the German insurance market published by the 
German Insurance Federation GDV in 2018. We show the corresponding 

Q-Q-plots for the logarithmic combined ratios together with the ap-
proximate p-values of the correlation test. 
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4. A Case Study from the German Insurance Market  
 

    
                        property                                             building 
            = =2,8831 4,32%T p                     = =2,1378 0,11%T p  
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4. A Case Study from the German Insurance Market  
 

   
                       content                                               accident 
            = =3,3515 17,95%T p                     = =3,5621 26,76%T p  
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4. A Case Study from the German Insurance Market  
 

   

                   legal expenses                                          liability 
            = =4,6539 91,30%T p                     = =3,9443 64,96%T p  
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