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One of the central issues in the Solvency II process will be an appropriate calculation of the 
Solvency Capital Requirement (SCR). This is the economic capital which an insurance company 
has to hold in order to guarantee a one-year ruin probability of at most 0.5%. In the so-called 
standard formula, the overall SCR is calculated form individual SCR’s in a particular way that 
imitates the calculation of the standard deviation for a sum of normally distributed risks (SCR 
aggregation formula). However, in order to cope with skewness in the individual risk 
distributions, this formula has to be calibrated accordingly in order to maintain the prescribed 
level of confidence. In this paper, we want to show that the methods proposed and discussed so 
far still show stability problems within the general setup.  
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1. Introduction 
 
In the European Solvency II project one of the major topics is the appropriate determination 
of the so called Solvency Capital Requirement (SCR).  
 
“The SCR corresponds to the economic capital a (re)insurance undertaking needs to hold in 
order to limit the probability of ruin to 0.5%, i.e. ruin would occur once every 200 years … . 
The SCR is calculated using Value-at-Risk techniques, either in accordance with the standard 
formula, or using an internal model: all potential losses, including adverse revaluation of 
assets and liabilities, over the next 12 months are to be assessed. The SCR reflects the true 
risk profile of the undertaking, taking account of all quantifiable risks, as well as the net 
impact of risk mitigation techniques.”1  
 
Further comments on this topic can be found in Ronkainen et al. (2007) and Sandström 
(2007). A suggestion for the “standard formula” (and in part also for internal models) is to 
aggregate the capital requirements  of n different lines of business (lob’s) to an overall 

SCR by the so called “square root formula”
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where the  denote the linear correlation coefficients between the risks of the different lob’s ijr
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2 The notation used here and in the sequel makes it more clear that the solvency capital requirements also depend 
on the ruin probability a  which is presently set to  by the European Commission. 0.005a =
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(see e.g. Sandström (2007), p. 127, formula (1b), or Sandström (2006), Chapter 9). This 
formula is correct in the sense that the prescribed overall confidence level of 99.5% (or, more 
generally,  for a given ruin probability 0  is maintained within the world of 
normal risk distributions, for the Value-at-Risk (VaR) as well as for the Tail-Value-at-Risk 
(TVaR) as underlying risk measures (see e.g. Koryciorz (2004), Chapter 2). In particular, we 
have: 
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where  denotes the 1 -quantile of the standard normal distribution with 

cumulative distribution function (cdf) 
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Here,  denotes the expectation of the risk of lob i and  its corresponding 

standard deviation. From the above formulas it follows, according to SANDSTRÖM (2006, 
p. 214), that in the world of normal distributions the capital requirements SC  are given by 

appropriate multiples of the standard deviations, as differences of the risk measure and the 
individual expectation: 

im Î 0is ³
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Note that the two types of SCR discussed in Sandström (2006), based on the standard 
deviation principle as well as on the VaR / TVaR, coincide in the normal world. There is, 
however, a major problem arising if the risks of the individual lob’s are not normally 
distributed. This affects the square root formula in two ways: firstly, in a general 
misspecification of the overall SCR even if the risks are independent (and hence all  are 

zero); secondly, in a misspecification of the overall SCR if the risks are uncorrelated but 
dependent. The first point has already been addressed in several publications before (se e.g. 
Sandström (2007) and the references given therein, or Sandström (2006), Chapter 9), 
considering certain calibration techniques that are based on the Cornish-Fisher expansion for 
the risk measures above and the skewness of the underlying risks. The second point has 
seemingly not found that kind of attention so far, to our knowledge.  

ijr

 
In this paper, we firstly want to demonstrate that even if the individual SCR’s (of the second 
type, based on VaR as the underlying risk measure) are exactly known and the resulting 
aggregate risk distribution is symmetric (and hence no calibrations are necessary), the square 
root formula can severely underestimate the true SCR. Secondly, we show that under a certain 
kind of dependence structure (so called grid type copulas) it is easy to construct cases of 
uncorrelated risks, for which the square root formula fails in a similar manner. 
 
 
2. Aggregated SCR’s for independent Beta distributed risks 
 
In this section we investigate the behaviour of the square root formula for certain independent 
Beta distributed risks. This class of risk distributions is e.g. used in certain geophysical 
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modelling software tools in connexion with “secondary uncertainties” (for a survey over this 
topic, see Grossi and Kunreuther (2005) or Straßburger (2006)). Beta distributions are an 
appropriate modelling tool if the possible damages from the risk under consideration are 
bounded above, e.g. by the sum insured in a windstorm portfolio. A further advantage of this 
family is the possibility to calculate explicitly the convolution density and cdf for integer 
values of the parameters which makes a mathematical analysis easier. 
 
In what follows we consider Beta distributed risks X with densities 
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( ; , )XF x n m  will denote the corresponding cdf. Since the densities in (5) are polynomials the 

convolution density for the aggregated risk  for independent summands with 
parameters  is piecewise polynomial and can easily be calculated via the 

following formula: 
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Likewise, the cdf  for the aggregated risk S is also piecewise polynomial and can be 

calculated via 
SF
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The Appendix contains some explicit expressions for the cdf’s from a selection of parameters 
that will be considered in more detail in the course of the paper. 
 
With the help of these results, it is possible to calculate (in the final step numerically) the true 
SCR’s, for the individual risks as well as for the aggregated risk. Note that for a risk X with 

density given in (5), we have 
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The following table shows some selected results. 
 

( , )n m  (0,0) (1,0) (2,0) (3,0) (0,1) (0,2) (0,3) 

SCR (0.01)
X

 0.4900 0.3283 0.2466 0.1974 0.5666 0.5345 0.4837 

SCR (0.005)
X

 0.4950 0.3308 0.2483 0.1987 0.5959 0.5790 0.5340 
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( , )n m  (1,2) (1,3) (1,4) (2,1) (3,1) (4,1) 

SCR (0.01)X  0.4591 0.4446 0.4200 0.3580 0.3007 0.2590 

SCR (0.005)X  0.4891 0.4816 0.4603 0.3706 0.3105 0.2670 

 
Tab. 1: solvency capital requirements for individual risk distributions 

 
The following table contains the true SCR values for the aggregated risk  with 

independent Beta distributed risks X and Y, in comparison to the values 

,S X Y= +

SC obtained via 
the square root formula (1). 

R

 

1 1 2 2
( , , , )n m n m  Density 

S
f  SCR (0.01)S  SCR (0.01)

Error in 
% SCR (0.005)S  SCR (0.005)

Error in 
% 

line 1: (0,0,0,0) 
 

0.8585 0.6929 -19.28 0.9000 0.7000 -22.21 

line 2: (1,0,1,0) 0.5942 0.4643 -21.85 0.6158 0.4678 -24.02 

line 3: (2,0,2,0) 0.4512 0.3488 -22.70 0.4658 0.3511 -24.61 

line 4: (3,0,3,0) 0.3633 0.2792 -23.12 0.3743 0.2810 -24.91 

line 5: (0,1,0,1) 0.8384 0.8013 -4.41 0.9171 0.8428 -8.10 

line 6: (0,2,0,2) 0.7352 0.7559 2.81 0.8187 0.8188 0.01 

line 7: (0,3,0,3) 0.6436 0.6841 6.30 0.7229 0.7553 4.47 

line 8: (0,1,1,0) 0.7479 0.6549 -12.44 0.8008 0.6816 -14.89 

line 9: (0,2,2,0) 0.6478 0.5887 -9.13 0.7056 0.6300 -10.71 

line 10: (0,3,3,0) 0.5656 0.5225 -7.61 0.6239 0.5698 -8.66 

line 11: (1,2,2,1) 0.6331 0.5822 -8.04 0.6851 0.6136 -10.44 

line 12: (1,3,3,1) 0.5758 0.5367 -6.79 0.6276 0.5729 -8.70 

line 13: (1,4,4,1) 0.5252 0.4933 -6.06 0.5760 0.5321 -7.62 

                

line 14: (4,8,8,4) 0.4023 0.3910 -2.79 0.4423 0.4251 -3.87 

 

Tab. 2: solvency capital requirements for aggregate risk distributions 
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As is clearly seen, the square root formula in most cases underestimates the true SCR 
significantly, in particular in cases where the distribution of the aggregate risk is skewed to 
the left (lines 2 to 4); but this holds also true in some cases where the distribution of the 
aggregate risk is symmetric. Lines 5 and 6 show cases where the distributions of the aggregate 
risk both are skewed to right, yet the square root formula produces deviations in both 
directions! Interestingly, a major deviation occurs also if the individual risks and hence also 
the aggregated risk are symmetrically distributed (line 1). However, there are also symmetric 
cases where the square root formula overestimates the true SCR, as can be seen from the last 
line in table 2. 
 
A closer analysis shows that for a special case of symmetry, namely for parameters of the 
form  we have  1 1 2 2( , , , ) (0, , ,0),n m n m n n=
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for small values of  The following table shows the corresponding values, for  .a 0.005.a=
 
 

n 0 1 2 3 
SCR ( ; )S na  0.9000 0.8008 0.7056 0.6239

appSCR ( ; )na  0.9000 0.8042 0.7142 0.6376

 
Tab. 3 

 

On the other hand, an asymptotic expansion of SCR ( ; )na  for this case shows that 
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for small values of  The following table shows the corresponding values, for  .a 0.005.a=
 
 

n 0 1 2 3 

SCR ( ; )na  0.7000 0.6816 0.6300 0.5698

appSCR ( ; )na  0.7035 0.6821 0.6283 0.5666

 
Tab. 4 
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Some further analysis shows that for large values of n, we obtain 
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Fig. 1 
 
This indicates that for the considered kind of symmetry,  the 

square root formula produces SCR values that are systematically too low compared with the 
true SCR values for the aggregate risk. 

1 1 2 2( , , , ) (0, , ,0),n m n m n n=

 
 
3. Aggregated SCR’s for uncorrelated risks 
 
In this section we investigate the behaviour of the square root formula for uncorrelated, but 
stochastically dependent risks. As a modelling tool, we use grid type copulas which have been 
introduced in Straßburger and Pfeifer (2005), see also Straßburger (2006). Recall for short 
that a copula C is a multivariate distribution function of a random vector that has continuous 
uniform margins. Its general importance is described in 
 
Sklar’s Theorem. Let H denote a d-dimensional distribution function with margins  

Then there exists a d-copula C such that for all  
1, , dF F .

)d d
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If all the margins are continuous, then the copula is unique, and is determined uniquely on the 
ranges of the marginal distribution functions otherwise. Moreover, the converse of the above 
statement is also true. If we denote by  the generalized inverses of the marginal 

distribution functions, then for every  in the unit d-cube,   

1
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1( , , )du u
 

( 1 1
1 1 1( , , ) ( ), ( ) .dC u u H F u F u- -=                                  (14)  

 
 
Copulas can be estimated below and above by the so called Fréchet-Hoeffding bounds: 
 

1 1 1 1 1( , , ) max( 1, 0) ( , , ) min( , , ) ( , , )d d d du u u u d C u u u u u u= + + - + £ £ =         (15)                     
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Note, however, that the lower Fréchet-Hoeffding bound is a copula only for  while the 
upper bound is a copula for all  In two dimensions, the pair  has the lower 
Fréchet-Hoeffding bound as copula, while the d-dimensional random vector  
has the upper Fréchet-Hoeffding bound as copula; here U denotes a uniformly distributed 
random variable over the unit interval. For further detail on copulas, especially in connexion 
with risk management, see McNeil et al. (2005). 
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A grid type copula is defined as follows: 
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for all  with  then the 

function  is the density of a d-dimensional copula, called 

grid-type copula with parameters  Here  denotes the indicator 

random variable of the event A, as usual. 
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It is easy to see that in case of an absolutely continuous d-dimensional copula C, with 
continuous density 
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c can be approximated arbitrarily close by a density of a grid-type copula. The classical 
multivariate mean-value-theorem of calculus tells us here that we only have to choose 
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Another interpretation of grid type copulas is given by the observation that a random vector 

 possesses a grid type copula type iff ( 1, , dU U=U  )
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d

d
 i.e. the conditional distribution of U given the hypercube 

1, ,i iI n  is d-dimensional continuous uniform (denoted by ). ( )
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A major advantage of grid type copulas is that they allow the explicit calculation of sums of 
dependent uniformly distributed random variables. This is essentially due to the following 
result. 
 
Lemma. Let  be independent standard uniformly distributed random variables and 

let 
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for  This follows e.g. from Uspensky (1937), Example 3, p.277, who attributes this 
result already to Laplace. 

.x Î

 
Theorem. Let  be a random vector whose joint cumulative distribution 

function is given by a grid-type copula with density  Then the 

density and cdf  and  resp., for the sum  is given by 
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with df  and  as defined in (20). dF

 
 
Example. Consider the weights   for a copula density given in matrix form ( ),ija n 3n =
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with suitable real numbers  It follows that the covariance of the corresponding 

random variables (
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i.e. the random variables (risks) ,X Y  are uncorrelated but in general dependent (unless 
1

)
9

a b c= = = . If we denote g  for short, the above theorem implies the following 

explicit representation of the cdf  of the aggregated risk (see 

Straßburger and Pfeifer (2005), section 3): 
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The following graph shows visualizations of these cdf’s, for various parameter choices. 
 

    

 
 

Fig. 2 
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From (23), we also obtain explicitly the corresponding quantile functions  because 

only quadratic equations have to be solved for this purpose. The following formula shows the 
results for three selected parameter vectors  in the range relevant for Solvency purposes: 
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Note that case [1] (“upper positive dependence”) and case [3] (“upper negative dependence”) 
correspond in a sense to the extreme cases under the above setup; see Fig. 2. Case [2] 
corresponds to the independent case (cf. the first line in table 2). Using (24), we can explicitly 
calculate the correct SCR values for the aggregate risk; in the subsequent table these are 
compared with the former results of the square root formula (note that due to the zero 
covariance of X and Y, no correction term is necessary).  

 

 

 SCR ( )S a  SCR ( )a  

a  case [1] case [2] case [3]  

0.01 0.9000 0.8585 0.5960 0.6929 

Error in % -23.01 -19.28 16.25  

0.005 0.9293 0.9000 0.6167 0.7000 

Error in % -24.67 -22.21 13.50  
 

Tab. 5 
 

It is perhaps surprising to see again a huge amount of instability in the square root formula 
here, from severe underestimation of the true SCR (as we have seen for left-skewed 
aggregated – independent –  risks before), up to a significant overestimation of the true SCR. 
Note that the original risks as well as the aggregate risk have a symmetric distribution in all 
three cases. 
 
 
4. Further problems with the aggregation formula 
 
In this last section, we return to the setup of section 2, but this time we allow for dependencies 
for the risks X and Y based on the upper and lower Fréchet-Hoeffding copulas as extreme 
cases of stochastic dependence. For simplicity, we concentrate on the symmetry case 

 again. According to the comment after relation (15) above and 1 1 2 2( , , , ) (0, , ,0)n m n m n n=
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Sklar’s Theorem, we can represent the risks X and Y as functions of just one uniformly 
distributed random variable U via 
 

1 1

1 1/( 1)

( ;0, ) 1 (1 )

( ; ,0)

n
X

n
X

X F U n U

Y F U n U

- +

- +

= = - -

= =

/( 1)

/( 1)

/( 1)

[ ]

,

u

n+

                                   (25) 

 
for the upper Fréchet-Hoeffding copula, case [u] (this follows readily from (5), see also 
Appendix, table 10) and  
 

1 1

1 1

( ;0, ) 1 (1 )

(1 ; ,0) (1 )

n
X

n
X

X F U n U

Y F U n U

- +

- +

= = - -

= - = -
                                         (26) 

 
for the lower Fréchet-Hoeffding copula, case [l]. Thus the aggregated risk S has the 
representation 
 

1/( 1) 1/( 1)1 (1 ) for case 

1 for case [ ]

n nU U
S

l

+ +ìï + - -ï=íïïî
                                       (27) 

 
which, by monotonicity arguments, implies that the corresponding quantile function  is 

similarly given by 
SQ *

 
1/( 1) 1/( 1)( ;0, , ,0) 1 (1 )n n

SQ u n n u u* += + - - + 0 1,u£ £ for  for case [u].                    (28) 

 
As a simple consequence, the exact SCR for the aggregate risk for case [u] can be written 
down as follows: 
 

1/( 1) 1/( 1)SCR ( ; ) (1 ) n
S na a a* += - -                                    (29) 

 
while the adjusted SCR from the square root formula (1) is given by 
  

2 2
1/( 1) 1/( 1)

1/( 1) 1/( 1)

1 1
(1 )

2 2
SCR ( ; )

1 1
2 (1 )

2 2

n n

n n
n

n n

n n
n

n n

n n

a a

a

r a a

+ +

+ +

æ ö æ+ +÷ ÷ç ç- - + - +÷ ÷ç ç÷ ÷ç çè ø è+ +
=

æ ö æ+ +÷ ÷ç ç+ - - ⋅ -÷ ÷ç ç÷ ÷ç çè ø è+ +





ö
ø

ö
ø

                     (30) 

 

for 
1

0
2

a£ £  where  denotes the correlation between  and  This 

can again be exactly calculated, via the following intermediate formula, with  

nr
1/( 1)nU + 1/( 1)1 (1 ) .nU +- -

1,m n= +
 

( ) ( )

1/
1 1

1/1/ 1/

0 0

1
4 1

1 (1 ) (1 )
3 11 1

2
2

m

mm m m m m
u u du u u du

m m
m

p
æ ö÷çG + ÷ç ÷çè

- - = - - = -
æ ö+ + ÷çG + ÷ç ÷çè ø

ò ò
ø

         (31)         

giving 
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1/( 1)
2

1
4 1

( 2) ( 3) 1
( 1)( 3)

3 11
2

2 1

n

n

n n n
n n

n
n

p
r

+ æ ö÷çG + ÷ç ÷ç+ + è += + + - ⋅
æ ö+ ÷çG + ÷ç ÷çè ø+

ø
.                              (32) 

Note that 
2

lim 1 0.6449...
6nn

p
r

¥
= - =  The following table shows some numerical results. 

 
 

 SCR ( ; )S na*  SCR ( ; )na  

a  0n =  1n =  2n =  3n =  0n =  1n =  2n =  3n =  

0.01 0.9800 0.8949 0.7812 0.6812 0.9800 0.8806 0.7584 0.6561

Error in %     0.00 -1.60 -2.91 -3.68 

0.005 0.9900 0.9267 0.8273 0.7328 0.9900 0.9120 0.8038 0.7068

Error in %     0.00 -1.58 -2.83 -3.54 
 

Tab. 6 
 

The asymptotic error for  is  -6.19%  for   and  -5.57%  for  This 
again indicates that the square root formula systematically underestimates the required SCR 
for this symmetry case, even with the proper correction term for correlation. The following 

graph shows the asymptotic ratio 

n ¥ 0.01a= 0.005.a=

SCR ( ; )
L ( ) lim

SCR ( ; )n
S

n

n

a
a

a
*

*¥
=  for  0 0.25.a£ £

 

 
 

Fig. 3 
 

The explicit form of this limit function is given by 
 

2 2 29( ( ) ( )) (36 3 )( ( ) ( )) 3 ( ) ( ) (36 3 )
L ( )

3( ( ) ( ))

A B A B A B

A B

a a p a a p a a p
a

a a
* + + - + - + -

=
-

2

     (33) 

 

for 
1

0 ,
2

a£ £  with  Note that  ( ) ln(1 ), ( ) ln .A Ba a a= - = a
0

lim  L ( ) 1.
a

a*


=
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For case [l], it is easy to see that due to  being a constant, the true SCR is zero, while now S
 

2 2
1/( 1) 1/( 1)

1/( 1) 1/( 1)

1 1
(1 )

2 2
SCR ( ; )

1 1
2 (1 )

2 2

n n

n n
n

n n

n n
n

n n

n n

a a

a

r a a

+ +

+ +

æ ö æ+ +÷ ÷ç ç- - + - +÷ ÷ç ç÷ ÷ç çè ø è+ +
=

æ ö æ+ +÷ ÷ç ç- - - ⋅ -÷ ÷ç ç÷ ÷ç çè ø è+ +





ö
ø

ö
ø

                              (34) 

 

for 
1

0
2

a£ £  which is strictly positive for all n, with limit zero for n  (Note that the 

correlation  from (32) changes its sign here). 

.¥

nr
 

 SCR ( ; )na  

a  0n =  1n =  2n = 3n = 10n = 20n = 50n =  100n =  

0.01 0 0.2869 0.3434 0.3399 0.2074 0.1249 0.0563 0.0293 

0.005 0 0.3119 0.3842 0.3870 0.2460 0.1501 0.0682 0.0356 
 

Tab. 7 
 

The correlation adjusted square root formula hence significantly overestimates the true SCR, 
except for the trivial case  0.n =
 

 

5. Discussion 
 

The foregoing analysis clearly shows that necessary calibrations of the standard SCR 
aggregation formula based on skewness and / or correlation alone cannot be sufficient for 
general purposes. For the class of risk distributions considered above the square root formula 
tends to underestimate the true aggregate SCR considerably, for both kinds of skewness, 
although in some cases also the converse is true. Table 2 shows examples where the square 
root formula overestimates the true SCR even in cases of skewnes to the right! This seems to 
be a general drawback of the standard deviation oriented SCR aggregation formula outside the 
world of normal or, more generally, elliptically contoured risk distributions. In our opinion, 
the general implementation of such a rule in a European standard formula should be done only 
after a very thorough market wide investigation of the type and shape of risk distributions that 
occur in practice. Otherwise there is a danger that companies which use more sophisticated 
internal models are “punished” by higher solvency capital requirements in comparison with 
those companies that only use a standard approach.  
 
From a mathematical point of view, the only reasonable “all-purpose” calibration seems to be 
the application of the maximum possible value 1 for the correlations in the square root 
formula, which is equivalent to the additivity rule for aggregate SCR’s, i.e. 
 

2

2

1 1

SCR SCR 2 SCR SCR SCR SCR .
n n

i i j i
i i j i i= < = =

æ ö÷ç= + = =÷ç ÷ç ÷è øå å å å
1

n

i                         (35) 

 

This would at least be generally consistent with the use of coherent (in particular, sub-
additive) risk measures R for the calculation of the individual SCR’s as 
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( ) ( )SCR i i iR X E X= -                                              (36) 
 

where iX  denotes the risk pertaining to lob i, because of the inequality 
 

( ) ( )total
1 1 1 1 1

SCR SCR .
n n n n n

i i i i
i i i i i

R X E X R X E X
= = = = =

æ ö æ ö÷ ÷ç ç= - £ - =÷ ÷ç ç÷ ÷ç ç÷ ÷è ø è øå å å å å i                  (37) 

 

Formula (35) would hence produce a value that is generally sufficiently large to maintain the 
prescribed 99.5% confidence level. Although VaR is not in all cases coherent (see e.g. the 
discussion in McNeil et al. (2005), Chapter 6, or Straßburger (2006), Chapter 7) there are 
certainly more situations in which formula (35) provides a sufficiently large SCR on the VaR 
basis compared with formula (1). This holds at least true for all of the examples considered in 
this paper. For instance, the modified table 2 reads (with SC  denoting the SCR 
according to rule (35)): 

R ( )a+

 

1 1 2 2
( , , , )n m n m  Density 

S
f  SCR (0.01)S SCR (0.01)+ Error 

in % SCR (0.005)S  SCR (0.005)+  Error 
in % 

line 1: (0,0,0,0) 

 
0.8585 0.9800 14.15 0.9000 0.9900 10.00 

line 2: (1,0,1,0) 

 
0.5942 0.6566 10.50 0.6158 0.6616 7.44 

line 3: (2,0,2,0) 

 
0.4512 0.4932 9.31 0.4658 0.4966 6.61 

line 4: (3,0,3,0) 

 
0.3633 0.3948 8.67 0.3743 0.3974 6.17 

line 5: (0,1,0,1) 

 
0.8384 1.1332 35.16 0.9171 1.1918 29.95 

line 6: (0,2,0,2) 

 
0.7352 1.0690 45.40 0.8187 1.1580 41.44 

line 7: (0,3,0,3) 

 
0.6436 0.9674 50.31 0.7229 1.0680 47.74 

line 8: (0,1,1,0) 

 
0.7479 0.8949 19.66 0.8008 0.9267 15.72 

line 9: (0,2,2,0) 

 
0.6478 0.7811 20.58 0.7056 0.8273 17.25 

line 10: (0,3,3,0) 

 
0.5656 0.6811 20.42 0.6239 0.7327 17.44 

line 11: (1,2,2,1) 

 
0.6331 0.8171 29.06 0.6851 0.8596 25.47 

line 12: (1,3,3,1) 
 

0.5758 0.7451 29.40 0.6276 0.7919 26.18 

line 13: (1,4,4,1) 

 
0.5252 0.6788 29.25 0.5760 0.7271 26.23 

 

Tab. 8 
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As is clearly seen, the overestimation of the true SCR is moderate for left skewed risk 
distributions (where formula (1) produces a severe underestimation), but certainly un-
acceptably  high for right skewed distributions. Similarly, the modified table 5 reads: 
 

 SCR ( )S a  SCR ( )a+  

a  case [1] case [2] case [3]  

0.01 0.9000 0.8585 0.5960 0.9800 

Error in % 8.16 12.40 39.18  

0.005 0.9293 0.9000 0.6167 0.9900 

Error in % 6.13 9.09 37.71  
 

Tab. 9 
 

The same effect as before is visible here: the overestimation error decreases for “upper 
positively” dependent risks (case [1]), while the converse is true for “upper negatively” 
dependent risks (case [3]). 
 

It should be finally mentioned that comparable results to those in sections 2 to 5 hold true 
under the (throughout coherent) risk measure TVaR, see e.g. Straßburger (2006), Chapter 7. 
 

A pragmatic way out of the problems outlined so far does not seem to be easy; a solution 
might be to allow the classical formula (1) only for certain classes of risk distributions (or 
lob’s) where such severe misspecifications typically do nor occur, while formula (35) should 
be applied in all other cases. 
 
Appendix 
 
The following table shows the expanded cdf’s for the individual risks with density given by 
(5), for some selected parameters, in the range 0  1.x£ £
 

( , )n m  
0

( ; , ) ( )
x

X X
F x n m f u du= ò  

(0,0) x 

(1,0) 2x  
(2,0) 3x  
(3,0) 4x  
(0,1) 2 2x x- +  
(0,2) 3 23 3x x x- +  
(0,3) 4 3 24 6 4x x x- + - + x  
(1,2) 4 33 8 6 2x x x- +  
(1,3) 5 4 3 24 15 20 10x x x- + - + x  
(1,4) 6 5 4 3 25 24 45 40 15x x x x- + - + x

(2,1) 4 33 4x x- +  
(3,1) 5 44 5x x- +  
(4,1) 6 55 6x x- +  

 
Tab. 10 
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The next table shows the cdf’s for the aggregated risk for some selected parameter choices. 
Note that the corresponding densitites 

1 1 2 2
( ; , , , )

S
f x n m n m  can be easily obtained from this by 

differentiation. 
 

1 1 2 2
( , , , )n m n m  

1 1 2 2
( ; , , , )

S
F x n m n m  

 0 1x£ £  1 2x£ £  

(1,0,1,0) 41

6
x  4 21 8

1
6 3

2x xx - +- +  

(2,0,2,0) 61

20
x  6 3 21 9 18

2 1
20 2 5

x x x x- + - + -  

(3,0,3,0) 81

70
x  8 4 3 21 32 32

2 8
70 75

x x x x x- + - + - +1  

   

(0,1,0,1) 4 341
2

6 3

2x x x- +  4 3 21 4 16
4

6 3 3
x x x x- + - + -

5

3
 

(0,2,0,2) 6 5 4 31 3 9
3 6

20 5 2

2x x x x- + - + x  6 5 4 3 21 3 48 11
3 8 12

20 5 5 5
x x x x x x- + - + - + -  

(0,3,0,3) 8 7 6 5 4 31 8 8 32
14 16 8

70 35 5 5

2x x x x x x- + - + - + x  

8 7 6 5 4

3 2

1 8 8 32
16

70 35 5 5

128 128 512 93

5 5 35

x x x x x

x x x

- + - + -

+ - + -

+

35

 

   

(0,0,0,0) 21

2
x  21

2 1
2

x x- + -  

(0,1,1,0) 4 31 2

6 3
x x- +  4 31 2 8

6 3 3
x x x- + -

5

3
 

(0,2,2,0) 6 51 3 3

20 10 4

4x x x- +  6 5 4 3 21 3 3 48
2 6

20 10 4 5 5
x x x x x x- + - + - + -

23
 

(0,3,3,0) 8 7 61 4 2 4

70 35 5 5

5x x x- + - + x  8 7 6 5 3 21 4 2 4 32 96 832 349

70 35 5 5 5 5 35 35
x x x x x x x+ - + - + --  

   

(1,2,2,1) 8 7 69 36 14 12

70 35 5 5

5x x x- + - + x  

8 7 6 5 3

2

9 36 14 12 32

70 35 5 5 5

96 576 163

5 35 3

x x x x x

x x

- + - -

+ - +

+

5

 

(1,3,3,1) 10 9 8 7 64 40 5 100 10

63 63 2 21 3
x x x x- + - + x  

10 9 8 7 6 5

4 3 2

4 40 5 100 10
8

63 63 2 21 3

640 800 640 1087
40

7 7 9 6

x x x x x x

x x x x

- + - + - - +

+ - + - +



3

 

(1,4,4,1) 12 11 10 9 8 725 25 23 95 195 30

924 77 14 21 28 7
x x x x x- + - + - + x

12 11 10 9 8 7

5 4 3 2

25 25 23 95 195 30

924 77 14 21 28 7

216 1080 6880 2560 16000 10919

7 7 21 7 77 231

x x x x x x

x x x x x

- + - + - -

- + - + - +



 
Tab. 11 
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