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ABSTRACT 
 
The actual discussions of appropriate risk measures to be used for the calculation of capital 
requirements in the Solvency II process have concentrated mainly on Value-at-Risk (VaR) 
and Expected Shortfall (ES). However, only recently the possible influence of dependence 
structures between the various types of risk or lines of business on such risk measures has 
drawn more attention [see e.g. WÜTHRICH (2003) or EMBRECHTS, HÖING AND PUCCETTI 
(2005) for a detailed discussion in connection with VaR]. The purpose of this paper is to 
investigate in more detail how the total risk distribution depends on different underlying 
dependence structures (copulas) while keeping the marginal distributions fixed, and how at 
least approximately such distributions can be calculated explicitly. We give several examples 
of uncorrelated (but dependent) risks with the same marginals, which show a completely 
different behavior for the aggregated risk distribution, in particular for the corresponding VaR 
and ES. Further, the influence of co- and counter-monotonicity of the marginal risks is shown 
to be totally different in the cases where the expectation of the individual risks is finite or 
infinite. These observations make it clear that the concept of correlation which is widely used 
e.g. in geophysical modeling and other professional DFA tools is not an appropriate 
dependence measure when risk aggregation or reinsurance of combined risks is considered.  
 
 

1. INTRODUCTION 
 
In the paper "Design of a future prudential supervisory system in the EU" (in short: "Solvency 
II"), being published by the European Commission, Internal Market DG in March 20031, one 
can find some general statements which are – in condensed form – given below: 
 

"The new system should provide supervisors with the appropriate tools to assess the “overall 
solvency” of an insurance undertaking. This means that the system should not only consist of 
a number of quantitative ratios and indicators, but also cover qualitative aspects that influence 
the risk-standing of an undertaking (management, internal risk control, competitive situation 

                                                 
1 Source: http://europa.eu.int/comm/internal_market/insurance/docs/markt-2509-03/markt-2509-03_en.pdf 
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etc.). … The solvency system should encourage and give an incentive to insurance 
undertakings to measure and manage their risks. In this regard, there is a clear need for 
developing common EU principles on risk management and supervisory review. Furthermore 
the quantitative solvency requirements should cover the most significant risks to which an 
insurance undertaking is exposed. This risk-oriented approach would lead to the recognition 
of internal models (either partial or full) provided these improve the undertaking’s risk 
management and better reflect its true risk profile than a standard formula." 
 

In the light of the last sentence, the possibility of developing "internal models" by the 
insurance companies themselves is particularly challenging due to the high complexity of 
mutual dependencies of risks within the liability and asset side each, but also between risks of 
these two categories. This fact is, however, still not sufficiently reflected by the present-day 
commercial and non-commercial DFA software tools. For instance, the meanwhile commonly 
accepted geophysical simulation software packages (see e.g. PFEIFER (2004) for more 
technical details) do not allow for a proper consideration of dependencies between different 
type of risks (such as windstorm and flooding or hailstorm) or between different regions. 
Likewise, software tools especially designed for Solvency II purposes can frequently not 
account for more sophisticated dependence structures due to the modular programming 
technique that is mainly underlying those products. In this paper, we want to show that the 
proper consideration of risk dependencies beyond correlation is of essential importance in the 
Solvency II discussion. In particular, we emphasize that the concept of correlation which is 
wide-spread in Solvency models such as the Swiss Solvency Test (see e.g. KELLER AND 

LUDER (2004)), but also in geophysical simulation software (see e.g. DONG (2001)) is not 
appropriate for the description of the distributional properties of aggregated risks. See also 
BLUM, DIAS AND EMBRECHTS (2002), p. 353f for a case study, or EMBRECHTS, STRAUMANN 

AND MCNEIL (2000) and EMBRECHTS, MCNEIL AND STRAUMANN (2002) for a more 
substantial discussion. 
 

 
2. SUMS OF DEPENDENT RISKS 

 
The problem of determining explicitly the distribution of a sum of two ore more dependent 
risks is generally non-trivial outside the world of normal distributions. In the latter case, it is 
clear that if 1, , nX X  are jointly normally distributed random variables with mean vector 

( )1, ,
tr n

nm m= Îμ    and variance-covariance matrix n n
ijs ´é ùS= Îê úë û   for some ,nÎ  then 

1

:
n

n i
i

S X
=

=å  is also normally distributed with mean 
1

n

i
i

m
=
å  and variance 

1 1

,
n n

tr
ij

i j

s
= =

⋅S⋅ =åå1 1  

where 1 is the column vector consisting of the entry 1 in every component. This is in general 
no longer true if the joint distribution is not normal, even if the marginals are still normal. 
Cases in which explicit expressions for the distribution of the sum of dependent random 
variables are known are rare, except for the trivial case of identical summands 1iX X=  for 

2, , ,i n=   which corresponds to the case of perfect comonotonicity. In most cases, Monte 
Carlo simulations are performed from which the cumulative distribution function for the 
aggregated risk is estimated; see e.g. BLUM, DIAS AND EMBRECHTS (2002) for an example. 
 

A central role in modeling dependencies between risks is played by the concept of copulas, 
which is nowadays widely used in Risk Management and Finance (see e.g. EMBRECHTS, 
STRAUMANN AND MCNEIL (2000), EMBRECHTS, MCNEIL AND STRAUMANN (2002), or 
CHERUBINI, LUCIANO AND VECCHIATO (2004)). A copula is essentially a multivariate 
distribution function restricted to the unit cube that has continuous uniform marginals. 
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Definition 2.1. A copula is a function C  of d variables on the unit d-cube [0,1]d  with the 
following properties: 
 

1. the range of C is the unit interval [0,1] ; 

2. ( )C u  is zero for all u  in [0,1]d  for which at least one coordinate equals zero; 

3. ( ) kC u=u  if all coordinates of u  are 1 except the k-th one; 

4. C  is d-increasing in the sense that for every £a b  in [0,1]d  the measure CD b
a  

assigned by C  to the d-box 1 1[ , ] [ , ] [ , ]d da b a b= ´ ´a b   is nonnegative, i.e. 
 

( )
( ) { }

1

1

1 1 1 1

, , 0,1

: ( 1) (1 ) , , (1 ) 0.

d

i
i

d
n

d d d dC C a b a b
e

e e

e e e e=

Î

å
D = - + - + - ³åb

a



  

 
 

Copulas have many useful properties, among them uniform continuity and (almost 
everywhere) existence of all partial derivatives (see e.g. NELSEN (1999), Theorem 2.2.4 and 
Theorem 2.2.7). Moreover, every copula lies between the so-called Fréchet-Hoeffding 
bounds, i.e. 
 

1 1 1max( 1,0) ( , , ) min( , , )d d du u d C u u u u+ + - + £ £    

 
which are commonly denoted by   and   in the literature. In two dimensions, both of the 
Fréchet-Hoeffding bounds are copulas themselves, but in higher dimensions, the Fréchet-
Hoeffding lower bound   is no longer n-increasing. However, the inequality on the left-hand 
side cannot be improved, since for any u  from the unit d-cube, there exists a copula Cu  such 

that ( ) ( )C= uu u�  (see NELSEN (1999), Theorem 2.10.12).  

 

 For the mathematical foundation of copulas we refer, in addition to the references mentioned 
above, to the monograph of NELSEN (1999) or PFEIFER AND NESLEHOVA (2004).  

Copula models considered in the literature so far are typically parametric, such as the 
Gaussian and t-copulas, and the family of Archimedian copulas comprising the Gumbel, 
Frank and Clayton copulas, to mention some. In many cases these copulas are symmetric, 
which does frequently not match the observed data situation, or the number of parameters is 
small in comparison with the dimensionality of the data. Further, for practically all non-trivial 
copula models of the above type, it is impossible to derive explicit expressions for the sum of 
dependent risks for which the dependence structure is given by such a copula. The recent 
paper by EMBRECHTS, HÖING AND PUCCETTI (2004) is one of the few that deals with explicit 
(and not just asymptotic) representations of the distribution of aggregate dependent risks for 
two or three summands. However, very specific copula models are considered here which 
arise from the problem of finding dependence structures that produce extreme Value-at-Risk 
(VaR) scenarios. 

In this section, we follow a different approach which essentially consists of an approximation 
of the underlying copula by certain grid-type copulas, for which the distribution of the sum of 
two or three (or even more) risks can be explicitly calculated in terms of piecewise defined 
polynomials. This enables also an explicit (approximate) calculation of a VaR and its 
corresponding Expected Shortfall (ES), at least if the risks involved have compact support. 
This approach is related to considerations in the paper by EMBRECHTS, HÖING AND JURI 
(2003), section 4.2.  
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Definition 2.2. Let ,d nÎ  and define intervals 
1, ,

1

1
( ) : ,

d

d
j j

i i
j

i i
I n

n n=

æ ù-ç ú= çç úçè û
´  for all possible 

choices { }1, , : 1, , .d ni i N nÎ =   If 
1 , , ( )

di ia n  are non-negative real numbers with the 

property 
 

( )
1

1

, ,
( , , )

1
( )

d

d k

i i
i i J i

a n
nÎ

=å 


  for all { } { }1, ,  and 1, , ,kk d i nÎ Î    

with ( ) ( ){ }1: , , | ,d
k n n k kJ i j j N j i= Î =  

 
then the function 

1 , ,1

1

, , ( )
( , , )

: ( )
d i id

d
d n

d
n i i I n

i i N

c n a n
Î

= å 


1  is the density of a d-dimensional copula, 

called grid-type copula with parameters { }
1 , , 1( ) | ( , , ) .

d

d
i i d na n i i NÎ   Here A1  denotes the 

indicator random variable of the event A, as usual. 
 
 
A simple interpretation of grid-type copulas is as follows: suppose that the discrete random 

vector ( )1, , dZ Z=Z   has support 
1

,
d

d
n nj

N N
=

=´  with ( )
11 , ,, , ( ).

di d d i iP Z i Z i a n= = =   

Further assume that the random vectors 
1, , di iX   are uniformly distributed over the interval 

1 , , ( )
di iI n  each, for 1( , , ) d

d ni i NÎ , and are independent of Z. Then the random vector ZX  

has the density nf  above. In other words, the distribution of ZX  is a mixture of standard 

multivariate uniform distributions over the disjoint intervals 
1, , ( ),

di iI n  with weights given by 

the  
1 , , 1, , , .

di i d na i i NÎ    

 
It is easy to see that in case of an absolutely continuous d-dimensional copula C, with 
continuous density  

 

( ) ( ) ( ) ( )1 1 1
1

, , , , , , , 0,1 ,
d

d

d d d
d

c u u C u u u u
u u

¶
= Î

¶ ¶
  


 

 

c can be approximated arbitrarily close by a density of a grid-type copula. We only have to 
choose 
 

( )

1

1

1

, , 1 1 1

1 1

( ) : , , , , ,

d

n

d n

d

i i

n n

i i d d d n

i i

nn

a n c u u du du C i i N
- -

= =D Îò ò β
α      

 

with 
1

, , 1, , .k k
nk nk

i i
k d

n n
a b

-
= = =   This follows e.g. from the classical multivariate 

mean-value-theorem of calculus. Moreover, a sequence of random vectors { }n nÎ
X   with a 

grid-type copula density nc  of this type for each nX  converges weakly to a random vector X 

with the given copula C. 
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In this paper, we shall mainly concentrate on the case of multidimensional uniform risks as in 
section 3.2 of EMBRECHTS, HÖING AND PUCCETTI (2005), although the ideas developed here 
can easily be applied at least in the case of multidimensional risks with compact support. 
 
Lemma 2.3. Let 1, , dU U  be independent standard uniformly distributed random variables 

and let df  and dF  denote the density and cumulative distribution function of 
1

: ,
d

d i
i

S U
=

=å  

resp., for .d Î  Then 
 

[ ]

( ) [ ] ( ]

1
0,

0

0, ,
0

1
( ) ( 1) ( ) sgn( ) ( )

2( 1)!

1
( ) ( 1) ( ) ( ) sgn( ) ( ) ( )

2 !

d
k d

d d
k

d
k d d

d d d
k

d
f x x k x k x

kd

d
F x k x k x k x x

kd

-

=

¥
=

æ ö÷ç= - ÷ - -ç ÷ç ÷ç- è ø
æ ö÷ç= - ÷ - + - - +ç ÷ç ÷çè ø

å

å

1

1 1
   for .x Î  

 
 
This follows e.g. from USPENSKY (1937), Example 3, p.277, who attributes this result already 
to Laplace. 
 
Corollary 2.4. Let 0h>  be a fixed real number and 1, , dV V  be independent random 

variables such that iV  is uniformly distributed over the interval [ ]( 1) ,i ij h j h-  with some 

integer ij
+Î  for all { }1, , ,i dÎ    and 0.h>  Then 

1

:
d

d i
i

T V
=

=å  has density and cumulative 

distribution function ( ; )df h   and ( ; ),dF h   resp., given by 

 

1

1

1
( ; )

( ; )

d

d d i
i

d

d d i
i

x
f h x f d j

h h

x
F h x F d j

h

=

=

æ ö÷ç= + - ÷ç ÷ç ÷è ø
æ ö÷ç= + - ÷ç ÷ç ÷è ø

å

å
    for .x Î  

 
Proof: Follows immediately from the fact that iV  can be represented as ( )1 ,i i iV j h hU= - +  

where iU  has a standard uniform distribution over [ ]0,1 ,  such that  

 

( )
1 1 1

: 1 : ,
d d d

d i i i d d d
i i i

T h j h U h j hd hS m hS
= = =

= - + = - + = +å å å  

 
say. Hence we have  

( )( ; ) d d
d d d d

x m x m
F h x P T x P S F

h h

æ ö æ ö- -÷ ÷ç ç= £ = £ =÷ ÷ç ç÷ ÷ç çè ø è ø
  

and thus also 
1

1
( ; ) ( ; ) . .,

d

d d d i
i

d x
f h x F h x f d j a e

dx h h =

æ ö÷ç= = + - ÷ç ÷ç ÷è øå  for .x Î  
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The preceding results allows us to formulate the main result of this section. 
 
Theorem 2.5. Let ( )1, , dX X  be a random vector whose joint cumulative distribution 

function is given by a grid-type copula in the sense of Definition 2.2, with density 

1 , ,1

1

, , ( )
( , , )

: ( ) .
d i id

d
d n

d
n i i I n

i i N

c n a n
Î

= å 


1  Then the density and cumulative distribution function 

( ; )df n   and ( ; ),dF n   resp., for the sum 
1

:
d

d i
i

S X
=

=å  is given by 

 

1

1

1

1

, ,
1( , , )

, ,
1( , , )

( ; ) ( )

( ; ) ( )

d
d

d n

d
d

d n

d

d i i d j
ji i N

d

d i i d j
ji i N

f n x n a n f nx d i

F n x a n F nx d i

=Î

=Î

æ ö÷ç ÷= ⋅ + -ç ÷ç ÷çè ø

æ ö÷ç ÷= ⋅ + -ç ÷ç ÷çè ø

å å

å å










   for ,xÎ  

 
with the functions df  and dF  from Lemma 2.3. 

 
 

It is easy to see that Theorem 2.5 extends readily in an approximate manner to the case of 
aggregated dependent risks in the situation where the joint distribution has a compact support 
 and a continuous density since it is always possible to find a sequence n  of disjoint 

unions of closed non-empty symmetric hypercubes in d dimensions whose are close to  , i.e. 
( )lim 0,d

n
n¥

= m   where dm  denotes Lebesgue measure and   denotes the symmetric 

difference of sets. Likewise, the joint density can be approximated by step functions defined 
on n  in the same way as for grid-type copulas. The corresponding details will be left to the 

reader; some examples will be given in Section 4. 
 
Theorem 2.5 and its extensions allow for an explicit representation of the density and 
cumulative distribution function of several dependent (uniformly distributed) risks in terms of 
piecewise defined polynomials of degree d, and therefore also for explicit expressions for the 
Value-at-Risk and the Expected Shortfall of the aggregated risk. This might be a good 
alternative to simulation studies which otherwise must be performed in order to obtain such 
kind of information. Also, with this approach, the dependence of VaR and ES on parameters 
of the distribution can be studied on a theoretical basis. 
 
 

3. SUMS OF DEPENDENT UNCORRELATED RISKS: SOME CASE STUDIES 
 

In this section we want to show that even for uncorrelated risks2, a broad range of different 
aggregate sum distributions and representations for VaR and ES are possible. We start with 
the most general case of a grid-type copula with 9 subsquares, i.e. we first consider the 
situation 2d =  and 3n =  in Definition 2.2. The weights ( )ija n for the copula density can 

then be described in matrix form as 
 

                                                 
2 Although in the papers cited in the introduction it is pointed out several times that correlation is no appropriate 
measure of dependence, it still seems to be the “standard” dependence measure in practice. 
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1/ 3

( ) ( ) 1/ 3

1/ 3 1/ 3 1/ 3
ij

a b a b

A n a n c d c d

a c b d a b c d

é ù- -
ê ú

é ù ê ú= = - -ê úë û ê ú
ê ú- - - - - + + + +ë û

 

 
with suitable real numbers [ ], , , 0,1/ 3 .a b c d Î  It follows that the covariance of the corres-

ponding random variables 1 2,X X  is given by 

 

( ) ( ) ( )
3 3

1 2 1 2
1 1

1 1 1 1 4 2 2 1
( )

9 2 2 4 9ij
i j

a b c d
E X X E X E X a n i j

= =

æ öæ ö + + + -÷ ÷ç ç- = - - - =÷ ÷ç ç÷ ÷ç çè øè øåå  

 
vanishing in the case  
 

1 4 2 2 .d a b c= - - -  
 

The case of uncorrelated (but possibly dependent) risks hence corresponds to a three-
parameter grid-type copula with parameter ( , , )a b cg =  given by 
 

1/ 3

( ) ( ) 1 4 2 2 2 / 3 4 2

1/ 3 2 / 3 4 2 2 / 3 3
ij

a b a b

A n a n c a b c a b c

a c a b c a b c

é ù- -
ê ú

é ù ê ú= = - - - - + + +ê úë û ê ú
ê ú- - - + + + - - -ë û

. 

 
The density and cumulative distribution function of the aggregated risk 2 1 2:S X X= +  are 

thus, by Theorem 2.5, given by 
 

{ } { }

{ } { }

{ } { }

{ } { }

{ } { }

2

1
9 , 0

3
1 2

3(2 ) 9( ) ,
3 3
2

9(4 3 ) 10 3(5 18 12 ) , 1
3

(3; ; ) 4
32 9(16 7 ) 9(14 6 3) , 1

3
4 5

28 3(52 19 ) 3(6 33 12 ) ,
3 3
5

6(2 9 3 ) 3( 2 9 3 ) , 2
3

0, oth

ax x

a b c a b c x x

a b c a b c x x

f x
a b c a b c x x

a b c a b c x x

a b c a b c x x

g

£ £

- + + - + + £ £

+ + - + - - + £ £

=
- + + + + + - £ £

- + + + + - - + £ £

- - + + - + + + £ £



erwise;

ìïïïïïïïïïïïïïïïïïïïíïïïïïïïïïïïïïïïïïïïî
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{ } { } { }

{ } { }

{ }

{ } { }

{ }

2

2

2

2

2

0, 0

9 1
, 0

2 3
9 1 1 2

( ) 3(2 ) ( 2 ),
2 2 3 3
3

(5 18 12 ) ( 10 36 27 )
22 1

1 3
(20 66 57 ),

6
9

( 3 14 6 ) (32 144 63 )
4(3; ; ) 2 1

1 3
( 106 474 213 ),

6
9

(2 11
2

g

£

£ £

- + + + - + + - + + £ £

- - + + - + + + +
£ £

+ - - +

- + + + + - - + +
= £ £

+ - + + +

-



x

a
x x

a b c x a b c x a b c x

a b c x a b c x
x

a b c

a b c x a b c x
F x x

a b c

{ } { }

{ }

{ } { }

{ }

2

2

4 ) ( 28 156 57 )
4 5

1 3 3
(134 726 267 ),

6
3

( 2 9 3 ) 3(4 18 6 ) 5
2 2

3
( 11 54 18 ),

1, 2.

ìïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïïíïïïïïïïïïï - + + - + + + +ïïï £ £ïïï + - - +ïïïïïï - + + + + - - + +ïï £ £ïïï + - + + +ïïïï ³ïî

a b c x a b c x
x

a b c

a b c x a b c x
x

a b c

x

 
Note that both functions only depend on the sum { }b c+  and not on b or c alone. The 

following graphs show five different densities 2 (3; ; )f g   and cumulative distribution 

functions 2 (3; ; )F g   for the sum 2 1 2 ,S X X= +  for various choices of ( , , ).a b cg =  
 

 

Fig. 1: densities 2 (3; ; )f xg  

( )2 3 1
, ,

18 18 18
g =

( )1 1
, , 0

6 6
g =( )1 1

0, ,
4 4

g =

( )2 2
0, ,

9 9
g =

( )2
, 0, 0

9
g =



 9

 

 
Fig 2: corresponding cdf’s 2 (3; ; )F xg  

 
For finding the “worst” VaR scenario in this setup we have to minimize the cumulative 
distribution function 
 

{ } { } { }2
2

3
(3; ; ) ( 6 9 3 ) 3(4 6 18 ) ( 11 54 18 )

2
F x a b c x a b c x a b cg = - + + + + - - + + - + + +  

 

at the point 
5

,
3

x =  which is the solution of the following linear programming problem: 

 
min! 6 2 2a b c+ +  under the conditions 

 
1

3
1

3
2

3
3
2

4 2
3

4 2 2 1

, , 0.

a b

a c

a b c

a b c

a b c

a b c

+ £

+ £

+ + £

+ + ³

+ + £
³

 

 
This follows from the entries in the matrix ( )A n  above and the fact that the marginal sums 
(rows and columns) add up to 1/ 3  each. 
 

The solution of this problem is given by all ( )0, ,b cg =  fulfilling the condition 
4

.
9

b c+ =  In 

particular, 
2

9
b c= =  is a feasible solution, which is among the cases shown in Fig. 1 and 2 

above (blue line). In a similar way, we can determine the “best” VaR scenario here, which is 

( )2 3 1
, ,

18 18 18
g =

( )2 2
0, ,

9 9
g =

( )2
, 0, 0

9
g =

( )1 1
, , 0

6 6
g =

( )1 1
0, ,

4 4
g =
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uniquely determined by the parameter 
2

,0,0 .
9

g
æ ö÷ç= ÷ç ÷çè ø

 This case is also shown above (pink 

line).  
 
Naturally, it is also possible to express the quantile function (3; ; )Q g  for all choices of g in 
an explicit way, by solving the appropriate quadratic equations in the representation of 

2 (3; ; )F g   above. For instance, for 
2

,0,0 ,
9

g
æ ö÷ç¹ ÷ç ÷çè ø

 we obtain 

 

6(2 3 ) 6(2 3 )(1 )
(3; ; )

3(2 3 )

K K u
Q u

K
g

- - - -
=

-
  for 2

5
3; ; 1

3
F ug

æ ö÷ç £ £÷ç ÷çè ø
  

 
with { }: 3 .K a b c= + +  For the following numerical example, we shall, for simplicity,  

restrict our considerations to the range of 
7

0, 7 1.
9

u= £ £  For the three cases “worst” VaR 

scenario, independence and “best” VaR scenario in this setup, we obtain 
 

4 1 7 8
9 7,

2 23 3 9 9 0, ,
8 9 9

2 1 , 1,
9

7 1 1 1
(3; ; ) 2 2(1 ), 1, , ,

9 9 9 9

5 1 7 2
2(1 ), 1, ,0,0 .

3 2 9 9

u u

u u

Q u u u

u u

g

g g

g

ììïïïï + - £ £ïï æ öïïï ÷ï ç= ÷íï ç ÷çïï è øïï - - £ £ïïïïïîïïï æ öïï ÷ç= - - £ £ = ÷í ç ÷çï è øïïï æ öï ÷çï - - £ £ = ÷çï ÷çï è øïïïïïïïî

 

 

 
Fig. 3: cdf’s for “worst” VaR [1], independence[2], and “best” VaR [3] scenario 

 

[1]

[2]

[3]
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Fig. 4: quantile functions (3; ; )Q ug  for “worst” VaR [1], independence[2], and “best” VaR 

[3] scenario  
 
   
Likewise, for the Expected Shortfall3, we obtain 
 
 

3

1

38 36 2
9 7 7 827 81 , 2 2

1 9 9 0, ,
9 91 8

2 1 1 , 1,
3 9

1 1 7 1 1 1
ES(3; ; ) (3; ; ) 2 2(1 ), 1, , ,

1 3 9 9 9 9

5 1 7 2
2(1 ), 1, ,0,0 .

3 3 9 9

u

u
u

u
u

u u

u Q v dv u u
u

u u

g

g g g

g

ìì -ïïïï - -ïïïïï £ £ï æ öïï ÷ç- = ÷í ç ÷çï è øï æ öï ÷ç - - £ £ï ÷çï ÷çè øïî
æ ö÷ç= = - - £ £ = ÷í ç ÷çè ø-
æ ö÷ç- - £ £ = ÷ç ÷çè ø

ò

ïïïïïïïïïïïï
ïïïïïïïïïïïïïïïïïïî

 

 

The following graph shows both the VaR and ES in the range 
7

0, 7 1,
9

u= £ £  for the three 

cases considered. 

                                                 
3 Here we denote ( )ES ( ; ; ) |

d d uu ES n u E S S VaRg = ³=  with ( ; ; )
u

VaR Q n ug=  for 0 1.u< <  In the 

literature, one often finds the complementary notation with 1 .ue = -  

[1]

[2]

[3]
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Fig. 5: VaR  and Expected  Shortfall for “worst” case [1],  

independence case [2], and “best” case [3]  
 
For instance, we obtain 
 

 worst case independence best case 

VaR0,9 1,6838 1,5528 1,4430 

ES0,9 1,7892 1,7019 1,5269 

VaR0,99 1,9000 1,8586 1,5960 

ES0,99 1,9333 1,9057 1,6225 

 
Tab. 1 

 
Interestingly, the VaR and ES values in the worst case are between 16% and 19% larger than 
in the best case, which shows that even in the case of uncorrelated risks, the range of values 
for the most popular risk measures for the aggregate risk is still enormous! 
 
 
 

4. SUMS OF DEPENDENT RISKS: MORE GENERAL CASES 
 

In this section we shall show that the concept of grid-type copulas and their generalizations 
outlined above is numerically very attractive and easy to implement, for instance by use of 
computer algebra systems. This applies especially to situations where the dimension is larger 
than 2 (cf. EMBRECHTS, HÖING AND PUCCETTI (2005)). 
 

VaR [1]

VaR [2]

VaR [3]

ES [1]

ES [2]

ES [3]
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Example 4.1. Suppose that the risks 1X  and 2X  are each uniformly distributed and their joint 

cumulative distribution function is a copula of Clayton or Gumbel type, resp., i.e. 
 

( ) ( )
( ) { }( )

1/

1

1/

2

; , 1 (Clayton)   or

; , exp ( ln ) ( ln ) (Gumbel)

C u v u v

C u v u v

qq q

qq q

q

q

-- -= + -

= - - + -
   for ( )2

( , ) 0,1 ,u v Î  with 1.q³  

 

We consider the distribution of the aggregated risk 2 1 2: .S X X= + The following graph shows 

the calculated densities for 2S  under these copulas, for a grid-type copula approximation (see 

the remark after Definition 2.2), with 10000 subsquares of the unit interval of equal area each. 
 
 

 
Fig. 6: approximation of densities for two aggregate dependent risks 

 
 
Example 4.2. Suppose that the risks 1 2,X X  and 3X  are each uniformly distributed and their 

joint cumulative distribution function is a grid-type copula with 32 8m m=  subcubes of the unit 
cube, with equal volumes each, for some ,mÎ  with weights 
 

1
: ( 1)

8
i j k

ijk m
a p+ += - +  for { }, , 1,2i j k Î  and 

1
.

8m
p <  

Then  
2

2

3

2

, 0 1
2

3 3
, 1 2

( ) 4 2

(3 )
, 2 3

2
0, otherwise

x
x

x x
f x

x
x

ìïï £ £ïïïïï æ öï ÷ï ç- - £ £÷ï ç ÷ç= è øíïïï -ï £ £ïïïïïïî

 

Clayton copula, 1q=
Clayton copula, 2q=

Gumbel copula, 2q=

Gumbel copula, 3q=
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with the density 3f  from Lemma 2.3, and the density 3(2 ; )mf   of the aggregate risk 

3 1 2 3:S X X X= + +  is given by 

 

{ }( )
2 2 2

3 3
1 1 1

(2 ; ) 2 2 3
m m m

m m m
ijk

k j i

f x a f x i j k
= = =

= + - + +ååå   for 0 3.x£ £  

 
Note that due to  
 

2 2 2 2

1 1 1 1

( 1) ( 1) ( 1) 0 ( 1) ( 1)
m m m m

i j k j k i i j k i j k

i i j k

p p p p+ + + + + + +

= = = =

- = - - = = - = -å å å å  

 
the ijka  actually define a copula. The following graphs show the density of the aggregated risk 

3 1 2 3S X X X= + +  for { }1, 2mÎ  and 
1

8 1m
p =

+
 (green line) together with the density resul-

ting from independence (red line). 
 

    
Fig. 7: densities of three aggregate dependent risks, left: 1,m =  right: 2m =  

 
 

Example 4.3. Here we consider five dependent risks 1 5, ,X X  with different marginal 

distributions and joint density given by 
 

20 20 20 20 20

1 5 ( , , , , ) 1 5
1 1 1 1 1

( , , ) ( , , , , ) ( , , )I i j k l m
i j k l m

f x x i j k l m x xa
= = = = =

= ⋅ååååå 1  

 
with ( ] ( ] ( ] ( ] ( ]( , , , , ) : 1, 1, 1, 1, 1,I i j k l m i i j j k k l l m m= - ´ - ´ - ´ - ´ -  and 

 

2 3

4
sin( )1 3( , , , , )

4

i j k
i j k l m

K i j k l m
a

+ + +
= ⋅

+ + + + -
   for { }, , , , 1, , 20 ,i j k l mÎ    

 

copula

independence

copula

independence
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with the normalizing constant  
 

20 20 20 20 20

2 3
1 1 1 1 1

4
sin( )

3 12198.
4i j k l m

i j k
K

i j k l m= = = = =

+ + +
= »

+ + + + -
ååååå  

 
Note that the support of the joint distribution consists of 520 3200000=  disjoint hypercubes 

in 5  of equal Lebesgue measure here.  
  
The following graph shows the resulting marginal densities rg  of these five risks. 

 
 

 
Fig. 8: marginal densities 

 
 
The density of the aggregate risk is now given by 
 

{ }( )
20 20 20 20 20

sum 5
1 1 1 1 1

( ) ( , , , , ) 5
i j k l m

f x i j k l m f x i j k l ma
= = = = =

= ⋅ + - + + + +ååååå   for 0 100x£ £  

 
with the density 5f  from Lemma 2.3. The following graph shows the result, in comparison 

with the corresponding case of independence. 

2g
4g

5g

1 3g g=
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Fig. 9: density of five aggregated risks, dependent vs. independent case 

 
 

 
Fig. 10: cumulative distribution function, dependent vs. independent case 

 
 
Obviously, in all of the above examples, the influence of the copula on the aggregate sum 
distribution is not negligible. In the last example (see Fig. 10), the VaR at 99% safety level is 
66,15 for the independent case, but 69,22 in the dependent case which is about 4,6% larger. 

copula

independence

independence
copula
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5. SUMS OF DEPENDENT RISKS WITH HEAVY TAILS 
 

In the preceding sections, all calculations were based on the fact that the risk distributions had 
in some way a compact support. In the actuarial practice, however, it is convenient to consider 
also unbounded risks, especially those with heavy tails. Such distributions are of relevance 
e.g. when natural perils have to be modeled. Although the approximation argument would be 
applicable here as well, it is interesting to see what the consequences of dependence between 
risks explicitly are in this area. It turns out that the existence of expectations is crucial here. 
 
The following results sharpen in some sense Examples 6 and 7 in EMBRECHTS, MCNEIL AND 

STRAUMANN (2002). 
 

Lemma 5.1. Suppose that the risks 1X  and 2X  follow a Pareto distribution with density 

 

3

1
( ) , 0

2 1
f x x

x
= ³

+
 

 
each. Then the density g and cumulative distribution function G of the aggregated risk 

2 1 2:S X X= +  can be explicitly calculated in the following cases: 

 
 Case 1: 1X  and 2X  are independent: 
 

32

1 1
( ) , ( ) 1 2 , 0

2(2 ) 1 1

z z
g z G z z

zz z z

+
= » = - ³

++ + +
 

 

 
Case 2: 1X  and 2X  are co-monotonic, i.e. the corresponding copula is the upper Fréchet 

bound  : 

3 3

1 1 2
( ) , ( ) 1 , 0

24 1 / 2 2 1
g z G z z

zz z
= » = - ³

++ +
 

 

 
Case 3: 1X  and 2X  are counter-monotonic, i.e. the corresponding copula is the lower Fréchet 

bound �: 

 
 

33

2

4 2 3 1
( ) ,

16 4 3 3 2

8 12 (8 4 ) 3
( ) , 6.

2

z z
g z

zz z z z

z z z z
G z z

z

+ - +
= »

++ - + + +

+ + - + +
= ³

+

 

 

 
Proof: In the independent case, we have 
 

3 3

0 0

1 1 1
( ) ( ) ( )

4 1 1 ( )

z z

g z f x f z x dx dx
x z x

= - =
+ + -

ò ò  for 0.z >  

Let  
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2

2(1 2 )
( ) :

(1 ) (1 )( )
a

a x
h x

a x a x

- +
=

+ + -
 for 0 x a£ <  with 0.a>  

Then 

3

1
'( ) :

(1 )( )
ah x

x a x
=

+ -
 for 0 .x a£ <  

Thus  1 2

2(2 )
( ) :

(2 ) (1 )(1 )
z

x z
h x

z x z x
+

-
=

+ + + -
 is the indefinite integral of 

3 3

1 1

1 1 ( )x z x+ + -
 

and hence we have 
 

( )1 13 3 2
0

1 1 1 1
( ) ( ) (0)

4 4 (2 ) 11 1 ( )

z

z z

z
g z dx h z h

z zx z x
+ += = - =

+ ++ + -
ò  for 0,z >  

 

with 
1

( ) 1 2
2

d z
g z

dz z

æ ö+ ÷ç ÷= -ç ÷ç ÷÷ç +è ø
 from which the statement follows. 

 
Case 2 is trivial since the distribution of 2S  is identical to that of 12 .X  Case 3 follows from 

the observation that for the cumulative distribution function F, we have 
 

3

0

1 1
( ) 1 , 0,

12 1

x

F x dy x
xy

= = - ³
++

ò  

 

which in turn implies  
 

1
2

1
( ) 1, 0 1.

(1 )
F u u

u
- = - < <

-
 

 

Hence 2 1 2S X X= +  is distributed as 1 1
2 2

1 1
( ) (1 ) 2

(1 )
F U F U

U U
- -+ - = + -

-
 for a stan-

dard uniformly distributed random variable U. Since the mapping  
2 2

1 1
2

(1 )
u

u u
+ -

-
  is 

strictly convex and symmetric w.r.t. the point 1/ 2u =  with its minimum attained there (with 
value 6) we see that the feasible set of real valued solutions u for the inequality 
 

2 2

1 1
2 , 6

(1 )
z z

u u
+ - £ ³

-
 

 
is given by the compact interval  
 

2 2

0 1

2 8 12 (8 4 ) 3 2 8 12 (8 4 ) 3
: , :

2(2 ) 2(2 )

z z z z z z z z z z
u u

z z

é ù+ - + + - + + + + + + - + +ê ú= =ê ú+ +ê úë û
. 

 
It follows readily that 
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( )
2

2 1 02 2

8 12 (8 4 ) 31 1
2 , 6.

(1 ) 2

z z z z
P S z P z u u z

U U z

æ ö + + - + +÷ç£ = + £ + ÷= - = ³ç ÷ç ÷ç - +è ø
 

 
The density given above now follows by differentiation. 
 
It is interesting to see that asymptotically, Case 1 and Case 3 are equal, and that in all three 
cases the density of the aggregate sum is – up to a constant factor – of the same Pareto type as 
the distribution of each summand. 
 
The following graphs show the cumulative distribution functions and VaR’s for 2S  in the 

three cases above. 
 

 
Fig. 11: cdf’s for the three cases 

 

 
Fig. 12: VaR’s for the three cases 

 
Surprisingly, Case 3 with counter-monotonicity produces the “worst” VaR scenario here, 
while Case 2 with co-monotonicity corresponds to the “best” VaR scenario! This seems to 
contradict the intuition that counter-monotonicity creates a diversification effect since “large” 
risks are always coupled with “small” risks. 

Case 1: independence

Case 1: independence

Case 2: co-monotonicity

Case 3: counter-monotonicity

Case 2: co-monotonicity

Case 3: counter-monotonicity
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A little more calculus shows that we have indeed: 
 

Case 1: 
2 2

4 2 4
VaR 2 4 ( 1)

(1 ) (1 )1 (2 )
u u

u uu u
= - - - 

- -+ -
  

Case 2: 
2

2
VaR 2

(1 )u u
= -

-
 

 

Case 3: 
2 2 2

4 4 4
VaR 2 2 ( 1)

(1 ) (1 ) (1 )u u
u u u

= - + + 
- + -

  

 
for 0 1.u< <  
 
 
The following result extends a modification of Example 2.4 in TASCHE (2002).  
 
Lemma 5.2. Suppose that the risks 1X  and 2X  follow a Pareto distribution with density 

 

2

1
( ) , 0

(1 )
f x x

x
= ³

+
 

 
each. Then the density g and cumulative distribution function G of the aggregated risk 

2 1 2:S X X= +  can be explicitly calculated in the following cases: 

 
 Case 1: 1X  and 2X  are independent: 
 

2

3 2 2 2

ln(1 ) 2 2 2 2ln(1 )
( ) 4 , ( ) , 0

(2 ) (1 )(2 ) (1 ) (2 )

z z z z z
g z G z z

z z z z z

+ + - +
= + » = ³

+ + + + +
 

 
Case 2: 1X  and 2X  are co-monotonic, i.e. the corresponding copula is the upper Fréchet 

bound  : 

2 2 2

1 2 2 2
( ) , ( ) 1 , 0

2(1 / 2) (2 ) (1 ) 2
g z G z z

z z z z
= = » = - ³

+ + + +
 

 

 
Case 3: 1X  and 2X  are counter-monotonic, i.e. the corresponding copula is the lower Fréchet 

bound �: 

 
 

23/ 2

2 2 2
( ) , ( ) , 2.

(1 ) 22(2 )

z
g z G z z

z zz z

-
= » = ³

+ +- +
 

 

 
Proof: In the independent case, we have 
 

2 2

0 0

1 1
( ) ( ) ( )

(1 ) (1 )

z z

g z f x f z x dx dx
x z x

= - =
+ + -ò ò  for 0.z >  

Let  
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3 2

2 1 2 1
( ) : ln

(1 ) (1 ) (1 )( )a

x x a
h x

a a x a x a x

æ ö+ - +÷ç= +÷ç ÷çè ø+ - + + -
 for 0 x a£ <  with 0.a>  

Then 

2 2

1
'( ) :

(1 ) ( )ah x
x a x

=
+ -

 for 0 .x a£ <  

Thus  1 3 2

2 1 2
( ) : ln

(2 ) 1 (2 ) (1 )(1 )z

x x z
h x

z z x z x z x+

æ ö+ -÷ç= +÷ç ÷çè ø+ + - + + + -
 is the indefinite integral of 

2 2

1 1

(1 ) (1 )x z x+ + -
 and hence we have 

 

1 12 2 3 2

0

1 1 ln(1 ) 2
( ) ( ) (0) 4

(1 ) (1 ) (2 ) (1 )(2 )

z

z z

z z
g z dx h z h

x z x z z z+ +

+
= = - = +

+ + - + + +ò  for 0,z >  

 

with 
2

2

2 2 ln(1 )
( )

(2 )

d z z z
g z

dz z

æ ö+ - + ÷ç ÷= ç ÷ç ÷ç +è ø
 from which the statement follows. 

 
Case 2 is again trivial since the distribution of 2S  is identical to that of 12 .X  Case 3 follows 

from the observation that for the cumulative distribution function F, we have 
 

2

0

1 1
( ) 1 , 0,

(1 ) 1

x

F x dy x
y x

= = - ³
+ +ò  

 

which in turn implies  
 

1 1
( ) 1, 0 1.

1
F u u

u
- = - < <

-
 

 

Hence 2 1 2S X X= +  is distributed as 1 1 1 1
( ) (1 ) 2

1
F U F U

U U
- -+ - = + -

-
 for a standard 

uniformly distributed random variable U. Since the mapping  
1 1

2
1

u
u u
+ -

-
  is again 

strictly convex and symmetric w.r.t. the point 1/ 2u =  with its minimum attained there (with 
value 2) we see that the feasible set of real valued solutions u for the inequality 
 

1 1
2 , 2

1
z z

u u
+ - £ ³

-
 

 
is given by the compact interval  
 

0 1

1 1 2 1 1 2
: , :

2 2 2 2 2 2

z z
u u

z z

é ù- -ê ú= - + =ê ú+ +ê úë û
. 

 
It follows again readily that 
 

( )2 1 0

1 1 2
2 , 2.

1 2

z
P S z P z u u z

U U z

æ ö -÷ç£ = + £ + = - = ³÷ç ÷çè ø- +
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The density given above again follows by differentiation. 
 
 
The following graphs show the cumulative distribution functions and VaR’s for 2S  in the 

three cases above. 
 

 

 
Fig. 13: cdf’s for the three cases 

 
 

 
Fig. 14: VaR’s for the three cases 

 

Case 1: independence

Case 1: independence

Case 2: co-monotonicity

Case 3: counter-monotonicity

Case 2: co-monotonicity

Case 3: counter-monotonicity
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Unlike above, Case 1 with independence produces the “worst” VaR scenario for large values 
of u, while Case 2 with co-monotonicity again corresponds to the “best” VaR scenario. Note, 
however, that there is exactly one intersection point between Case 1 and Case 3, and that all 
VaR scenarios are asymptotically equivalent. This will be discussed later in more detail. 
 
Note also that in Case 1, no explicit representation of the VaR is possible. For the other two 
cases, we obtain: 
 

Case 2: 
2 2

VaR ( 1)
1 1u

u
u

u u
= 

- -
  

 

Case 3: 
21 2 2

VaR ( 1)
1 1 1u

u
u

u u u

+
= ⋅ 

+ - -
  

 
for 0 1.u< <  
 
 
Lemma 5.3. Suppose that the risks 1X  and 2X  follow a Pareto distribution with density 

 

3

2
( ) , 0

(1 )
f x x

x
= ³

+
 

 
each. Then the density g and cumulative distribution function G of the aggregated risk 

2 1 2:S X X= +  can be explicitly calculated in the following cases: 

 
 Case 1: 1X  and 2X  are independent: 
 

( )2

5 4 2 3

3 2

3 4

4 10 1048ln(1 ) 4
( ) ,

(2 ) (2 ) (1 ) (1 )

7 16 6 12
( ) ln(1 ), 0

(2 ) (1 ) (2 )

z z zz
g z

z z z z

z z z
G z z z z

z z z

+ ++
= + »

+ + + +

+ + +
= - + ³

+ + +

 

 
Case 2: 1X  and 2X  are co-monotonic, i.e. the corresponding copula is the upper Fréchet 

bound  : 

3 3 2

8 8 4
( ) , ( ) 1 , 0

(2 ) (1 ) (2 )
g z G z z

z z z
= » = - ³

+ + +
 

 

 
Case 3: 1X  and 2X  are counter-monotonic, i.e. the corresponding copula is the lower Fréchet 

bound �: 

 
 

( )
2 3

2 2 2 2

4 2 2
2

4(2 ) 4
( ) ,

(1 )4 2 2 4 5 4 5 1 4 5

1
( ) (2 ) 4(2 ) 8 8 (2 ) 1, 2.

(2 )

z
g z

zz z z z z z z z

G z z z z z
z

+
= »

++ + - + + + + - + +

= + - + - - + + ³
+
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Proof: In the independent case, we have 
 

3 3

0 0

1 1
( ) ( ) ( ) 4

(1 ) (1 )

z z

g z f x f z x dx dx
x z x

= - =
+ + -ò ò  for 0.z >  

Let  

5 4 2 2 2

24 1 2 1 2 1
( ) : ln 12 2

(1 ) (1 ) (1 )( ) (1 ) (1 ) ( )a

x x a x a
h x

a a x a x a x a x a x

æ ö+ - + - +÷ç= + +÷ç ÷çè ø+ - + + - + + -
  

 
for 0 x a£ <  with 0.a>  Then 

3 3

4
'( ) :

(1 ) ( )ah x
x a x

=
+ -

 for 0 .x a£ <  

Thus  

1 5 4 2 2 2

24 1 2 2
( ) : ln 12 2

(2 ) 1 (2 ) (1 )(1 ) (2 ) (1 ) (1 )z

x x z x z
h x

z z x z x z x z x z x+

æ ö+ - -÷ç= + +÷ç ÷çè ø+ + - + + + - + + + -
  

 

is the indefinite integral of 
3 3

2 2

(1 ) (1 )x z x
⋅

+ + -
 and hence we have 

 

1 13 3 5 4 2 2

0

2

5 2 4

1 1 ln(1 ) 24 4
( ) 4 ( ) (0) 48

(1 ) (1 ) (2 ) (1 )(2 ) (1 ) (2 )

ln(1 ) 10 10
48 4

(2 ) (1 ) (2 )

z

z z

z z z
g z dx h z h

x z x z z z z z

z z z
z

z z z

+ +

+
= = - = + +

+ + - + + + + +

+ + +
= +

+ + +

ò

 for 0,z >  
 

with 
3 2

3 4

7 16 6 12
( ) ln(1 )

(2 ) (1 ) (2 )

d z z z
g z z z

dz z z z

æ ö+ + + ÷ç ÷= - +ç ÷ç ÷ç + + +è ø
 from which the statement follows. 

 
Case 2 is again trivial since the distribution of 2S  is identical to that of 12 .X  Case 3 follows 

from the observation that for the cumulative distribution function F, we have 
 

3 2

0

2 1
( ) 1 , 0,

(1 ) (1 )

x

F x dy x
y x

= = - ³
+ +ò  

 

which in turn implies  
 

1 1
( ) 1, 0 1.

1
F u u

u
- = - < <

-
 

 

Hence 2 1 2S X X= +  is distributed as 1 1 1 1
( ) (1 ) 2

1
F U F U

U U
- -+ - = + -

-
 for a 

standard uniformly distributed random variable U. Since the mapping  
1 1

2
1

u
u u
+ -

-
  

is again strictly convex and symmetric w.r.t. the point 1/ 2u =  with its minimum attained 

there (with value 2 2 2)-  we see that the feasible set of real valued solutions u for the 
inequality 
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1 1
2 , 2 2 2

1
z z

u u
+ - £ ³ -

-
 

 
or, equivalently, by taking squares on both sides, 
 

21 2
(2 ) , 2 2 2

(1 ) (1 )
z z

u u u u
+ £ + ³ -

- -
 

 
is given by the compact interval [ ]0 1,u u  with (substitute (1 ) )u u v- =  
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It follows again readily that 
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The density given above again follows by differentiation. 
 
The following graphs show the cumulative distribution functions and VaR’s for 2S  in the 

three cases above. 
 

 

 
Fig. 15: cdf’s for the three cases 

 

Case 1: independence

Case 2: co-monotonicity

Case 3: counter-monotonicity
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Fig. 16: VaR’s for the three cases 

 
Note that here Case 2 with co-monotonicity produces the “worst” VaR scenario for large 
values of u, while Case 3 with counter-monotonicity corresponds to the “best” VaR scenario. 
This is in accordance with intuition. Also, there is exactly one intersection point between Case 
2 and Case 3 with Case 1.  
 
Note also that in Case 1, again no explicit representation of the VaR is possible. For the other 
two cases, we obtain: 
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2

VaR 2
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u
u

= -
-

 

 

Case 3: 
22 1 1 2
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11 1

u

u
u

uu u
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+- -
  

 
for 0 1.u< <  
 
 
The fact that pairwise intersections between the cumulative distribution functions and the 
quantile functions, resp. for the dependent cases and the independent case occur in Lemma 5.3 
is due to the fact that the expectation of the risks exists here. Namely, if F and G are different 
cumulative distribution functions for non-negative risks with the same expectation, then 
 

( ) ( )
0 0

1 ( ) 1 ( ) .F x dx G x dx
¥ ¥

- = -ò ò  

 

Hence it is not possible that we can have ( ) ( )  or  ( ) ( )F x G x F x G x< >  for all ,x Î  such 
that at least one intersection point between F and G must exist. [The examples in sections 3 

Case 1: independence

Case 2: co-monotonicity

Case 3: counter-monotonicity
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and 4 show that we can even have arbitrarily many.] This implies also that a uniformly 
“worst” or “best” VaR scenario cannot exist in case of finite expectation, as was also pointed 
out in EMBRECHTS, HÖING AND PUCCETTI (2005). Note however, that in Lemma 5.2 this is 
possible, since all risks have infinite expectation here. 
 
 

5. IMPLICATIONS FOR DFA AND SOLVENCY II 
 

It should have become clear from the preceding discussion that neglecting dependencies 
between risks in an insurer’s portfolio can lead to a substantial misspecification of the target 
or solvency capital, which is strongly related to the overall (aggregated) risk of the company. 
For example, in the Swiss Solvency Test (see e.g. KELLER AND LUDER (2004)), all typical 
insurance risks are considered  to be independent, as becomes clear form the use of the word 
“convolution”  everywhere. 
 

 
 

Fig. 17: scheme of the Swiss Solvency Test; source: Swiss Federal Office of Private 
Insurance, Bern, Switzerland  

 
The present discussion about which risk measure should be used to calculate the target or 
solvency capital concentrates on VaR and Expected Shortfall mainly. However, both 
measures are heavily influenced by the underlying dependence structure, even in the case of 
uncorrelated risks, as has been shown in section 3. This is particularly crucial when natural 
perils such as windstorm, hailstorm, flooding, earthquakes and others are considered. The first 
mentioned hazards have sometime joint climatic triggers, which leads to dependencies 
especially of the larger losses, due to spatial or temporal dependence. The following graph 
shows a scatterplot pertaining to an empirical copula derived form a portfolio consisting of 
windstorm (U) and flooding (V) losses. It can be clearly seen that the corresponding copula is 
not symmetric, and that – due to a lack of data – there is not necessarily a tail dependence 
visible in the right upper part of the square. 
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Fig. 17: empirical copula for windstorm vs. flooding 

 
Performing a 2c -test here with three cells (one marked in green and two in red), and hence 2 
degrees of freedom, gives a test statistic of 5,7176T =  corresponding to a p-value of 0,0574. 
So it is reasonable to assume that there is some dependence between these risks. The data can 
be well fitted to a 4 4´ grid-type copula represented by the following weight matrix (see 
section 3): 
 

13 8 8 5

12 15 7 01

8 17 7 12136

1 4 12 17

A

é ù
ê ú
ê ú
ê ú= ê ú
ê ú
ê ú
ë û

 

 
Note that if we relate the weights ija  to the physical cells in the scatterplot above, we obtain 

the following picture: 
 

a14 a24 a34 a44 

a13 a23 a33 a43 

a12 a22 a32 a42 

a11 a21 a31 a41 

 
To illustrate the usefulness of grid-type copulas, we assume for simplicity and purposes of 
comparison that the marginal distributions of windstorm and flooding are of the same Pareto 
type as in Lemma 5.3 above. The following graph shows the empirical quantile function for 
the aggregate risk from a Monte Carlo study with 100 000 simulations using this copula: 
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Fig. 18: VaR’s for aggregate risk 

 
It is clearly seen that the VaR for the aggregate risk under the grid-type copula is strictly 
below the VaR under independence for values of 0,6u <  but larger than the VaR under 
independence for values of 0,7.u >  It is comparable to the VaR under co-monotonicity for 
values of  u  around 0,9. 
 
Using grid-type copulas or related concepts of dependence can thus improve very much the 
reliability of estimations of the target or solvency capital in the Solvency II process. 
 
Finally, it should be pointed out that most DFA tools such as commercial geophysical 
modeling software (see e.g. DONG (2001), GROSSI AND KUNREUTHER (2005),  KATHER AND 

KUZAK (2002)) do not properly implement dependence structures but rely rather on 
correlation, which is crucial as was shown in section 2. The use of grid-type copulas or related 
dependence concepts could likewise improve the performance of such products. The 
mathematical background of the typical modeling approach used here is explicitly described 
in PFEIFER (2004). This approach is based on a special case of the classical collective risk 
model, consisting of Poisson distributed claim numbers and random or deterministic claim 
sizes. This is also an element of the Swiss Solvency Test (cf. Fig. 17). Possible constructions 
of dependencies within such type of structures have recently been described in PFEIFER AND 

NESLEHOVA (2004).  
 
 

Case 1: grid-type copula (blue)

Case 2: 
independence 
(red)

Case 3: co-monotonicity (green)
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