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ABSTRACT

Modern Integrated Risk Management (IRM) and Dynamic Financial Analysis
(DFA) rely in great part on an appropriate modeling of the stochastic behavior
of the various risky assets and processes that influence the performance of the
company under consideration. A major challenge here is a more substantial and
realistic description and modeling of the various complex dependence structures
between such risks showing up on all scales. In this presentation, we propose
some approaches towards modeling and generating (simulating) dependent risk
processes in the framework of collective risk theory, in particular w.r.t. dependent
claim number processes of Poisson type (homogeneous and non-homogeneous),
and compound Poisson processes.

1. INTRODUCTION

In the recent years it has become more and more popular for insurance com-
panies and other financial institutions to use concepts like DFA (Dynamic
Financial Analysis) for their risk management systems. The central idea behind
this is to map all relevant assets and liabilities together with potential cash
flows and other monetary transactions into a large-scale computer model in
order to simulate the development of the balance sheet over some time. With
such integrative approaches, not only potential effects of sophisticated strate-
gic management decisions can be studied in vitro, but also negative business
developments become visible early enough so that preventive measures could
be taken in time.

The reliability of such systems, however, is largely determined by the pre-
cision with which the mostly random processes and their complex interrelation-
ships involved are depicted here. For the common user of statistical methods,
“correlation” is perhaps the first probabilistic concept to remember, in partic-
ular since this kind of “dependence” concept has introduced itself at large to
the financial markets, supported by theoretical approaches like the Capital
Asset Pricing Model (CAPM) and the Arbitrage Pricing Theory (APT). This
is due to the fact that these theories are founded on the “normal” world where
in the multivariate setting, the joint distributions are indeed characterized by pair-
wise correlation (or covariance, resp.). This is not only no longer true outside
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that world but also very misleading results can be produced when the concept
of correlation is applied without caution, as has been pointed out in several
papers in the recent past (see e.g. Embrechts et al. [8], [7], or Blum et al. [2]).
The paper of Müller and Bäuerle [21] shows that this topic has meanwhile
also raised sufficient interest in the insurance world.

2. COPULAS

When modeling multivariate distributions, one has to take into account the
effects of the marginal distributions as well as of the dependence between them.
This can be elegantly achieved by using the copula approach, which allows
to deal with the margins and the dependence structure separately. The name
“copula” has been first mentioned by Abe Sklar in 1959 as a function which
couples a joint distribution function with its univariate margins. Since then, a
great deal of papers has been published on this topic; a good introduction can
be found in Nelsen [23].

Definition 2.1. A copula is a function C of n variables on the unit n-cube [0,1]n

with the following properties:

1. the range of C is the unit interval [0,1];

2. C (u) is zero for all u in [0,1]n for which at least one coordinate equals zero;

3. C (u) = uk if all coordinates of u are 1 except the k-th one;

4. C is n-increasing in the sense that for every a ≤ b in [0,1]n the volume assigned
by C to the n-box [a,b] = [a1,b1] ≈ ··· ≈ [an,bn] is nonnegative. ¬

As can be easily seen, a copula is in fact a multivariate distribution function
with univariate margins restricted to the n-cube. Copulas have many useful
properties, such as uniform continuity and existence of all partial derivatives,
just to mention a few. Moreover, it can be shown that every copula is bounded
by the so-called Fréchet-Hoeffding bounds, i.e.

max(u1+··· + un – n + 1,0) ≤ C(u1, ···, un) ≤ min(u1, ···, un)

which are commonly denoted by W and M in the literature. In two dimensions,
both of the Fréchet-Hoeffding bounds are copulas themselves, but as soon as
the dimension increases, the Fréchet-Hoeffding lower bound W is no longer n-
increasing. However, the inequality on the left-hand side cannot be improved,
since for any u from the unit n-cube, there exists a copula Cu such that W (u) =
Cu(u) (see Nelsen [23], theorem 2.10.12).

Another well-known copula is the so-called independence copula, ( ) uu
i

n

1
=

=
i%% .

The following theorem due to Sklar justifies the role of copulas as dependence
functions:
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Theorem 2.2 (Sklar). Let H denote a n-dimensional distribution function with
margins F1,···, Fn. Then there exists a n-copula C such that for all real (x1,···, xn),

H (x1,···, xn) = C (F1(x1),···,Fn(xn)).

If all the margins are continuous, then the copula is unique, and is determined
uniquely on the ranges of the marginal distribution functions otherwise.
Moreover, the converse of the above statement is also true. If we denote by
F1

–1,···, Fn
–1 the generalized inverses of the marginal distribution functions, then

for every (u1,···, un) in the unit n-cube,

C(u1,···, un) = H (F1
–1(u1),···,Fn

–1(un)). ¬

For a proof, see Nelsen [23], Theorem 2.10.9 and the references given therein.

Consequently, it is possible to construct a wide range of multivariate distribu-
tions by choosing the marginal distributions and a suitable copula. Moreover,
the above theorem shows that copulas remain invariant under strictly increasing
transformations of the underlying random variables. Besides this, they are uni-
formly continuous and all their partial derivatives exist almost everywhere,
which is a useful property especially for computer simulations.

Since their discovery, various interesting properties of copulas have been
extensively studied in the literature. However, most part of the research concen-
trates on the bivariate case, since multivariate extensions are generally less
easily to be done. For further information on this subject, we refer to Nelsen
[23], Joe [13] and the references mentioned therein.

Due to the Fréchet-Hoeffding inequality, every multivariate distribution func-
tion is non-trivially bounded, i.e. for every real (x1,···, xn) the following holds:

W (F1(x1),···,Fn(xn)) ≤ H(x1,···, xn) ≤ M (F1(x1),···,Fn(xn)).

In the bivariate case, both the Fréchet-Hoeffding bounds as well as the inde-
pendence copula have the following stochastic representation, as was already
noticed by Hoeffding [11]:

Theorem 2.3. Let U and V be random variables uniformly distributed over the
unit interval [0,1]. Then their joint distribution function restricted to the unit
square [0,1]2 is equal to 

• W, if and only if U = 1 – V a.s.,

• P, if and only if U and V are independent,

• M , if and only if U = V a.s. ¬

In other words, every bivariate dependence structure lies somewhere between
two extremes, the perfect negative and the perfect positive dependence. Because
of this fact copulas can be partially ordered in the following way:
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Definition 2.4. A copula C1 is smaller than a copula C2, in symbols: C1'C2 if
for any u in the unit square [0,1]2, C1(u) ≤ C2(u). ¬

As mentioned above, copulas reflect the dependence structure between the
margins, and are therefore of great use in various dependence and association
concepts. For instance, the well known bivariate concordance measures Ken-
dall’s t and Spearman’s r as well as the tail dependence and likelihood ratio
dependence concepts can be expressed in terms of the underlying copula alone.
However, the role played by copulas in the study of multivariate dependence
is much more complex and far less well understood (for further details see
Mari and Kotz [20], Nelsen [23] or Joe [13] and the references given therein).

Throughout this paper we will focus on one special bivariate dependence
measure, the linear correlation coefficient,

,
,

.X Y
X Y

X Y
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It is easily seen that r does not depend on the underlying copula alone and will
therefore be influenced by the marginal distributions as well. However, the fol-
lowing result from Hoeffding [11] suggests that the role played by copulas in
this setting will nevertheless be important:

Theorem 2.5. Let (X,Y ) be a bivariate random vector with a copula C and
marginal distribution functions F and G such that E (|X |) < ∞, E (|Y |) < ∞ and
E (|XY |) < ∞. Then the covariance between X and Y can be expressed in the
following way:

, ,
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This result together with the abovementioned Fréchet-Hoeffding inequality
has the following consequence for the correlation coefficient:

Theorem 2.6. Let – under the conditions of Theorem 2.6 – (X,Y ) be a bivari-
ate random vector with fixed marginal distribution functions F and G. In case
that the underlying copula is C the corresponding correlation coefficient will
be denoted by rC. Then

1. rC is always bounded by the correlation coefficients corresponding to the
Fréchet-Hoeffding bounds, rW ≤ rC ≤ rM ;

2. if C1 and C2 are copulas, then the relation C1'C2 yields rC1
≤ rC2

. ¬

Cambanis et al. [3] proved that an extension in the following sense is possible:
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Theorem 2.7. In the situation of the previous theorem, let EC(X,Y) denote the
expectation corresponding to an underlying copula C. Moreover, let k denote
a right continuous real function of two variables, satisfying the so-called Monge
condition, i.e.

k(x,y) + k(x�, y�) ≤ k(x, y�) + k(x�, y)

whenever x ≤ x� and y ≤ y�. If either

1. k is symmetric and both the expectations Ek(X,X) and Ek(Y,Y) are finite, or
2. Ek(X,y0) and Ek(x0,Y ) are finite for some x0 and y0 ,

and if C1 and C2 are copulas, than the relation C1'C2 yields

EC1
k(X,Y ) ≥ EC2

k(X,Y ). ¬

A multivariate extension of this result is also possible, as well as another deriva-
tion which requires different assumptions. For more details on this subject, we
refer to the work of Rachev and Rüschendorf [28], [29]. See also Mari and Kotz
[20] where other aspects of the interplay between correlation and dependence
are studied in more detail.

Consider now a bivariate random vector (X,Y ) with fixed marginal distribu-
tions F and G such that both the correlation coefficients rW and rM exist and
are finite. Then each number in the interval [rW , rM ] is equal to rC for some
copula C. Indeed, if we choose an � from [0,1] and define a copula C� by 

C� := � · W + (1 – �) · M ,

then the corresponding correlation coefficient rC�
is � · rW + (1 – �) · rM . The so

constructed one-parameter family of copulas includes the Fréchet-Hoeffding
lower and upper bound and allows for both negative and positive correlation.

However, it is worth noticing that � r r
r

M W

M= - yields a zero correlation and a

copula which does not correspond to the independence of X and Y. Moreover,
the independence copula can never be constructed using the above method.

Other parametric families with similar properties which provide more tractable
models have been described in the literature. We will mention the following few.

Example 2.8 (The Fréchet and Mardia families). Let �, b be in [0,1] with � +
b ≤ 1. The two-parameter family of copulas 

C�,b (u,v) = � · M (u,v) + (1 – � – b )∏ (u,v) + b · W (u,v)

is called the Fréchet family. This family includes the Fréchet-Hoeffding bounds
as well as the independence copula and yields, upon setting � = 0 and b > 0 a
one-parameter family with negative correlation, and, upon setting � > 0 and
b = 0 a one-parameter family with positive correlation. In both cases the cor-
relation is a function of the corresponding parameters.
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Another one-parametric family can be built by setting ( )� q q
2

1
2

= - and b = 

( )q q
2

1
2

+ for q ∈ [–1,1]:

( , ) ( , ) ( , ) ( , ).C u v u v u v u vq q q q qM W
2

1 1
2

1q

2
2

2

$= - + - + +%] _ ]g i g

This family is the so-called Mardia family (see e.g. Nelsen [23], p. 12). Again,
it includes the Fréchet-Hoeffding bounds as well as the independence copula;
also, the correlation of its members ranges over the whole interval [rW , rM ].

However, neither the Fréchet family nor the Mardia family are ordered and
the distribution functions constructed using them do not in general have a
probability density.

Example 2.9 (The Frank family). Let q be in (–∞,∞) /{0}. The one-parameter
family defined by

( , ) lnC u v
e

e e
q
1

1
1

1 1u v

q q

q q

= - +
-

- -
-

- -
_ _

f
i i

p

is called the Frank family. The Fréchet bounds are included as limiting cases,
i.e. C–∞ = W and C∞ = M . The limit q → 0 yields the independence copula ∏.
Moreover, the Frank family is positively ordered, that is, Cq ' Cq� as soon as
q ≤ q�. From this it follows easily that putting q ≤ 0 yields a negative correlation
and q ≥ 0 a positive correlation, respectively.

The Frank family has an interesting application in insurance pricing, see e.g.
Mari and Kotz [20], p. 78; for recent applications in finance, see e.g. Junker and
May [15].

Members of the Frank family are all Archimedean copulas (see Nelsen [23],
chapter 4) and the only ones in this class which are symmetric, i.e. for which 

C(u,v) = u + v – 1 + C(1 – u, 1 – v) for all (u,v) ∈ [0,1]2

with the geometric interpretation that the rectangles [0,u] ≈ [0,v] and [1 – u,1] ≈
[1 – v,1] have the same C-volume (see e.g. Nelsen [23], p. 33).

Example 2.10 (The Plackett family). For q > 0, q ≠ 1, the members of the
Plackett family are defined by

( , )C u v
u v u v uv

q
q q q q

2 1

1 1 1 1 4 1
q

2

=
-

+ - + - + - + - -

]

] ] ] ] ]

g

g g g g g6 6@ @

and for q = 1 by C1 := ∏. They are absolutely continuous and again have the
Fréchet-Hoeffding bounds as limiting cases, i.e. C0 = W and C∞ = M . Like the
Frank family, the Plackett family is positively ordered and symmetric, but no
longer Archimedean. Consequently, putting q < 1 yields a negative correlation
and q > 1 a positive correlation, respectively.
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According to the Sklar’s theorem, for any given fixed marginals each of the
abovementioned families can be used to construct a parametric family of bivari-
ate distributions, which contains both negatively and positively correlated mem-
bers. Moreover, the minimum as well as the maximum correlation can be
achieved. We will use this method in the next chapter and construct bivariate
Poisson distributions, which are negatively correlated.

However, as we can see with the above examples, the linear correlation
coefficient and the marginal distributions alone do not uniquely determine the
underlying joint distribution. This is true only if we restrict ourselves to the
multivariate normal or more generally, to the elliptical distributions, as pointed
out for example by Embrechts et al. [8].

3. DEPENDENT POISSON RANDOM VARIABLES

The problem of constructing a bivariate Poisson distribution with negative cor-
relation is an old one and has been studied by various authors (here we refer
to a bivariate Poisson distribution as to any distribution with univariate Pois-
son margins), see e.g. Griffiths et al. [10] and Nelsen [23] and further references
mentioned therein. According to the statements mentioned before, the correla-
tion coefficient for such distributions satisfies rW ≤ r ≤ rM , where rW < 0 < rM
according to well-known Results due to Hoeffding and Fréchet (see e.g. Theo-
rem 4 in Embrechts et al. [8]). Therefore, there exist bivariate Poisson distribu-
tions that have a negative correlation.

However, probably the best known bivariate Poisson distribution (e.g. Camp-
bell [4] and Teicher [30] as well as Johnson et al. [14] and references given
therein) has been derived as a limiting case of a bivariate binomial distribution
and has a joint probability generating function of the form

exp(l1(t1 – 1) + l2(t2 – 1) + a12(t1 – 1)(t2 – 1)).

This distribution can be represented in the following way (for further details
on the corresponding work of Dwass and Teicher see the references in John-
son et al. [14]):

If Y1, Y2 and Y12 are independent random variables distributed according to
P (l1 – a12), P (l2 – a12) and P (a12) respectively, then the random vector (Y1 +
Y12, Y2 + Y12) has the abovementioned bivariate Poisson distribution. ¬

With this interpretation it is obvious, that only positive correlation can be achieved
in this way. Furthermore, it can be shown that this holds for all infinitely divis-
ible bivariate Poisson distributions, since their joint probability generating func-
tions are all of the above form.

Another class of Poisson distributions can be constructed by mixing the afore-
mentioned distribution with respect to the covariance, but, although such distri-
butions are no longer infinitely divisible, again only non-negative correlation is
permissible (see Griffiths et al. [10]). For further properties of such bivariate Pois-
son distributions, see Johnson et al. [14] and Kocherlakota & Kocherlakota [17].
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Griffiths et al. [10] present a method how to construct bivariate Poisson distri-
butions with negative correlation from an independent pair of Poisson distri-
buted variables by shifting the probability mass under preserving the margins.
Besides this, the authors present another technique by considering the follow-
ing form of the joint probabilities:

P[X = i , Y = j ] = P[X = i ] P[Y = j ] (1 + � · c(i)f( j))

where c and f are maps from �0 to � with E [c(X)] = E [f(Y)] = 0. If the mar-
ginals are Poisson with parameter 1, they set

c(k) = f(k) =
e

eg
1

1k g

2

1

+

--
_ i

with g ∈ [–1,1] which yields a negatively correlated distribution whenever � < 0.
A similar idea was used by Lee [19] and Lakshminarayana [18] who choose

c(i) = e– i – e–l1(1–1/e) and  f( j) = e– j – e–l2(1–1/e)

and construct a bivariate Poisson distribution with P (l1) and P (l2) margins
belonging to the so-called Sarmanov family of distributions. Again, upon set-
ting � < 0 a negative correlation is achieved which, however, will tend to zero
for increasing values of l1 and l2. Note that choosing the Farlie-Gumbel-Mor-
genstern family of copulas (for a definition see Nelsen [23]) can be viewed as
a special case of the abovementioned construction by setting c(i) = (1 – 2F(i))
and f( j) = (1 – 2G ( j)).

In this paper we shall follow another scheme, however. According to the
abovementioned theorem of Sklar, arbitrary multivariate Poisson distributions
can be obtained from copulas by choosing univariate Poisson margins, as already
pointed out e.g. by Joe [13]. Such models may not possess a stochastic inter-
pretation, but can cover a wide range of dependence, including the desired
negative correlation. Furthermore, many parametric families of copulas can be
easily simulated.

The first case, where the copula approach yields an elegant solution, is a
bivariate Poisson distribution H with minimum correlation as noted already by
Griffiths et al. [10] as well as Nelsen [23]. As mentioned before, the correlation
coefficient achieves its minimum when choosing the Fréchet-Hoeffding lower
bound W as the underlying copula. Therefore, if we denote by F and G the dis-
tribution functions of P (l1) and P (l2) respectively and by h (i, j) the probabi-
lities assigned to the grid points {(i, j )} (or, likewise, to the intervals (i – 1, i ] ≈
( j – 1, j ]), we get, upon setting 

h(i, j) = W (F(i),G( j)) – W (F(i),G( j – 1)) – W (F(i – 1),G( j)) + W (F(i – 1),G( j – 1))
= max(F(i) + G(j) – 1,0) – max(F(i) + G(j – 1) – 1,0) (*)

– max(F(i – 1) + G(j) – 1,0) + max(F(i – 1) + G(j – 1) – 1,0),

a bivariate Poisson distribution with P (l1) and P (l2) margins and the minimum
possible (negative) correlation.
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From this it can readily be deduced that at most a finite number of the prob-
abilities h(i, j) will have a nonzero value for i, j > 0. This follows from the fact
that for i, j large enough we have

h(i, j) = (F(i) + G( j) – 1) – (F(i) + G( j – 1) – 1) – (F(i – 1) + G( j) – 1)
+ (F(i – 1) + G( j – 1) – 1) = 0.

Unfortunately, the structure of the above probability density function h will
depend on the parameters l1 and l2 in a rather complex way, so that no close
formula is obtained. Generally we can say that as the values of the parame-
ters l1 and l2 increase, the number of cells (i – 1, i ] ≈ ( j – 1, j ]) with i, j > 0 and
nonzero probabilities rise and their positions move away from (0,0).

This procedure can alternatively be visualized by a two-dimensional ana-
logue for the generation of random variables from a discrete distribution, using
the lower Fréchet-Hoeffding bound in terms of a pair (U,1 – U) where U is a
uniformly R [0,1]-distributed random variable.

If we subdivide the x- and y-axis in the unit square by the values F(k) and
G(k) for k = 0, 1, 2, ... each where F and G as above denote the univariate
cumulative distribution functions of a bivariate Poisson distribution with P (l1)
and P (l2) margins, then the unit square is divided into a countably infinite
collection of rectangles Rij given by Rij := (F(i – 1), F(i)] ≈ (G( j – 1), G( j)] for
i, j > 0. Generating a pair (U,1 – U) then produces a random “point” in the unit
square which with probability one hits exactly one of these rectangles Rmn,
whose right upper corner coordinates F(m) and G(n) determine the values of
the discrete random variables X = m and Y = n which are, by construction,
P (l1) and P (l2)-distributed, respectively and have minimal (negative) correla-
tion. The following exemplifying graphs show how this works in the situation
of a pair (X,Y) with P (1) and P (2) margins (left) and P (3) and P (5) margins
(right).
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FIGURE 2.

The vertical lines here correspond to the subdivision of the x-axis according
to F, the horizontal lines to the subdivision of the y-axis according to G. In the
above example, we have U = 0.3, resulting in the simulated pair (X,Y) = (0,3) [left]
and (X,Y) = (2,6) [right].
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The case of l1 = l2 (= l, say) is of particular interest here because the calcu-
lation of the corresponding minimal correlation r(l) simplifies a little. Fig. 2
shows the situation for l = 2; the numbers in the rectangles correspond to the
values of X · Y. The shaded rectangles denote those areas which are involved
in the calculation of the minimal (negative) correlation (cf. also Nelsen [23] for
some corresponding tabulated values).

Note that the minimal possible correlation here does not attain the value
of –1 for any choice of l1 and l2, nor is it equal to another (negative) constant,
but it in general depends both on l1 and l2. Nelsen [23] and Griffiths et al [10]
use the following expression for the correlation coefficient (which immediately
follows from Theorem 2.5):
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Again, the above expression depends on the parameters l1 and l2 in a com-
plex way and cannot easily be evaluated explicitly, in general.

However, as we will see in the sequel, both the probability function as well
as the correlation can be computed using a (polynomial time) greedy algorithm.
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This is due to the fact that the problem of constructing a bivariate discrete dis-
tribution with minimum correlation can be viewed as a basic transportation
problem. Such problems, which are well-known in Operations Research (see e.g.
Gass [9]), are of the following form:

Minimize ijc xij
j

n

i

m

00 ==

!! under the conditions j ij,x b x aij
j

n

i

m

00

= =
==

i!! and xij ≥ 0

where ai, bj and cij, i = 0, ···, m and j = 0, ···, n are given non-negative real num-

bers with m,n ∈ � satisfying the side conditions a bi j
j

n

i

m

00

=
==

!! and cij + ck ≥

ci + ckj whenever i ≥ k and j ≥ , for all i,k = 0, ···, m and j, = 0, ···, n. If we
interpret ai as an amount of products manufactured in place i and bj as an
amount of products needed in place j, and the cij as the cost for shipping one
product unit from i to j, then the xij solving the above minimization problem
can be viewed as the corresponding optimal shipping strategy.

The algorithm which provides the optimal solution, known as the north
west corner rule, is due to Hoffman [12]. However, the essential idea was first
noticed by Monge in 1781 already. In our case, the xij correspond to the joint
probabilities h(i, j) defined before, and the “costs” are given by cij = ij. Since
only a finite number of the probabilities h(i, j) has a nonzero value for i, j > 0,
the above problem of minimizing the correlation can be formulated in the fol-
lowing way:

NWC-Algorithm:

1. Find m and n such that 
G(0) ≥ 1 – F(m)
F (0) ≥ 1 – G(n);

2. Set h(i, j) = 0 for i > m, j > 0 and for i > 0, j > n;

3. Set h(i,0) = !i
e l1-

li
1 for i > m and h(0, j) = !j

e l2-

l j
2 for j > n;

4. Calculate the probabilities h(i, j) as solutions of the transportation problem

Minimize ij
j
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using the north west corner rule.
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Note that for each selection of l1 and l2 we have to solve a different optimiza-
tion problem. In particular, the numbers m and n depend on these parameters.
Also, the optimal solution found by the north west corner rule corresponds
exactly to (*) above. For further details and proofs, see Neslehova [24].

It is worth mentioning that the optimality of the north west corner rule
algorithm is based on the same idea of shifting mass away from the main diag-
onal used by Griffiths et al. [10] in the sense that this algorithm represents the
maximum possible shift.

In what follows we shall show how the above NWC algorithm based on the
north west corner rule operates in situation of l1 = l2 = l say. For this pur-
pose, we shall consecutively determine the various possible values for n in the
corresponding first step above. For further details, see Neslehova [24].

Case n = 0:

Solve F(0) = 1 – F(0) or, equivalently, 1 – 2e–l = 0 giving l = l1 := ln2 = 0.6931.
Then according to step 1 of the NWC-algorithm, F(0) ≥ 1 – F(n) for l ∈ [l0, l1]

with l0 := 0. Further, h(i, j) = 0 for i > 0, j > 0 and h(0,i) = h(i,0) e–l
!i

l i

for i > 0,
according to steps 2 and 3 of the NWC-algorithm. Note that in the particular
case here, according to step 4 of the NWC-algorithm, no explicit minimization
problem has to be solved; instead, we have directly

:
,

.
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3333

====
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]

g g
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Case n = 1:

Solve F(0) = 1 – F(1) or, equivalently, 1 – (2 + l)e–l = 0 giving the numerical solu-
tion l = l2 := 1.1461. Then according to step 1 of the NWC-algorithm, F(0) ≥
1 – F(n) for l ∈ [l1, l2]. Further, h(i, j) = 0 for i > 1, j > 0 or i > 0, j > 1 and

h(0,i) = h(i,0) = e–l
!i

l i

for i > 1, according to steps 2 and 3 of the NWC-algo-
rithm. It remains to solve

Minimize h(1,1) under the conditions

h(0,0) + h(0,1) = p(0) h(0,0) + h(1,0) = q(0)
h(1,0) + h(1,1) = p(1) h(0,1) + h(1,1) = q(1)

where p(0) = q(0) = F(0) + F(1) – 1 = e–l (2 + l) – 1 and p(1) = q(1) = F(1) –
F(0) = le–l.

The solution is 

h(0,0) = 0 h(0,1) = h(1,0) = e–l(2 + l) – 1 h(1,1) = 1 – 2e–l ,
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such that 
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Case n = 2:

Solve F(0) = 1 – F(2) or, equivalently, 2 – (4 + 2l + l2)e–l = 0 giving the numeri-
cal solution l = l3 := 1.5681. Then according to step 1 of the NWC-algorithm,
F(0) ≥ 1 – F(n) for l ∈ [l2, l3]. Further, h(i, j) = 0 for i > 2, j > 0 or i > 0, j > 2

and h(0,i) = h(i,0) = e–l
!i

l i

for i > 2, according to steps 2 and 3 of the NWC-
algorithm. It remains to solve

Minimize h(1,1) + 2h(1,2) + 2h(2,1) + 4h(2,2) under the conditions

h(0,0) +h(0,1) + h(0,2) = p(0) h(0,0) + h(1,0) + h(2,0) = q(0)

h(1,0) +h(1,1) + h(1,2) = p(1) h(0,1) + h(1,1) + h(2,1) = q(1)

h(2,0) +h(2,1) + h(2,2) = p(2) h(0,2) + h(1,2) + h(2,2) = q(2)

where 

p(0) = q(0) = F(0) + F(2) – 1 = e–l l l
2

2

2

+ +c m – 1 and

p(1) = q(1) = F(1) – F(0) = le–l, p(2) = q(2) = F(2) – F(1) = l
2

2

e–l.

The solution is 

h(0,0) = h(0,1) = h(1,0) = 0 h(1,1) = 2e–l (1 + l) – 1

h(0,2) = h(2,0) = e–l (2 + l + l
2

2

) – 1

h(1,2) = h(2,1) = 1 – e–l (2 + l) h(2,2) = 0

such that 

:
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The following table contains an evaluation for r(l) in functional form, sum-
marizing and continuing the results from the approach above. r(l) is given
piecewise as rn(l) in the interval [ln–1,ln] for n ≥ 1, where ln is the positive
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solution of the equation rn+1(l) – rn(l) = 0. For a discussion of the existence
of appropriate solutions, see Neslehova [24], Lemma 8.2.1.
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Surprisingly, the correlation r(l) is not a decreasing function of l ; however, as
expected, we have lim

l " 3
r(l) which will be proved in the subsequent Theorem 3.1.

In Fig. 3, a plot of rn(l) in the intervals [ln–1, ln] for n between 1 and 7 is shown.
Note that such a plot has been provided already by Griffiths et al. [10], however
on a purely numerical basis only, except for the first interval.

Theorem 3.1. Let Xl and Yl be Poisson distributed random variables with para-
meter l > 0 each such that their correlation r(l) = r(Xl,Yl) is minimal. Then 

( ) .lim r l 1
l

= -
" 3

Proof: Let Fl denote the cumulative distribution function of Xl and Yl, resp.
By Skorohod’s Embedding Theorem (see e.g. Billingsley [1], Theorem 25.6), we
can assume that Xl := F –1

l (U) and Yl := F –1
l (1 – U) with some random variable

U being uniformly distributed over [0,1] where F –1
l denotes the pseudo-inverse

n rn(l) ln is the positive solution of
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FIGURE 3.

of Fl. Note that this particular choice also induces the minimal correlation
r(l) = r(Xl,Yl) according to what has been said above. Since

lE
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l
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4
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= +e o for l ≥ 1,

an application of Markov’s Inequality shows that we have, for l ≥ 1,
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d n for 0 < u < 1

whenever l ≥ 1.
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step function: l ( )G u1-

continuous line: B (u)

step function: Gl(x)

continuous lines: Hu(x) and Ho(x)

Fig. 4 below visualizes these inequalities for the special choice l = 5.
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FIGURE 4.

It follows that

l l , :max
X Y

U U
W

l
l

l
l

2
1

1

1
$ #

- -

-
=d n a.s., say,

with E(W) < ∞. Now, by the Central Limit Theorem and Skorohod’s Embedding
Theorem again,

l l( ) , ( )lim lim
X

U Z
Y

U Z
l

l
l

l
F F 1 1

l l

1 1
-

= =
-

= - = -
" "3 3

- - a.s.

where Z := F–1(U) has a standard normal distribution. By Lebesgue’s Domi-
nated Convergence Theorem we thus find that 
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E Z Z E Z E Zr l
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1 1
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which was to be proved. ¬¬

To complete the mathematical analysis made so far, we shall give a simple ele-
mentary proof for the minimality of the functions rn(l) for n = 1,2,3 here.
Note that this is equivalent to prove that
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Case 1: 0 < l ≤ l1: trivial
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Case 2: l1 ≤ l ≤ l2: Let A0 := {X = 0}, B0 := {Y = 0}, then P(A0) = P(B0) = e–l,
and hence, denoting by 1A the indicator random variable for the event
A, since XY ≥ 1(A0∪ B0)c,

E(XY ) ≥ E(1(A0∪ B0)c) = P(Ac
0 ∩ Bc

0) = 1 – P(A0 ∪ B0) ≥ 1 – P(A0) – P(B0)

= 1 – 2e–l.

Case 3: l2 ≤ l ≤ l3: XY ≥ 1(A0∪B0)c + 1(A0∪A1)c∩ B0
c + 1(B0∪B1)c∩ A0

c for A1 := {X = 1},
B1 := {Y = 1}, and hence 

E(XY) ≥ P((A0 ∪ B0)c) + P((A0 ∪ A1)
c ∩ Bc

0 ) + P((B0 ∪ B1)
c ∩ Ac

0)
= 1 – P(A0 ∪ B0) + 1 – P(A0 ∪ A1 ∪ B0) + 1 – P(B0 ∪ B1 ∪ A0)

≥ 3 – 3P(A0) – 3P(B0) – P(A1) – P(B1) = 3 – 6e–l – 2le–l,

as stated. ¬

The case of different parameters l1 and l2 can in principle be tackled the same
way, although more subtle cases have to be distinguished. For simplicity, we
shall outline the analogues of cases 1 and 2 only, i.e.

( )
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which follows immediately along the lines of proof above, or, in terms of the
correlation r(l1, l2):
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which provides indeed the lower attainable bounds for the correlation in the
range specified (see also Griffiths et al. [10] for tabulated values). Figure 5 shows
a 3D-plot of this function.

In a similar way, by choosing various other families of copulas, arbitrary joint
Poisson distributions can be constructed. For instance, if we choose the Frank
or the Plackett family introduced in the previous chapter, we get a one-para-
meter family of joint Poisson distributions, which are negatively correlated for
a proper choice of the parameter. Moreover, the minimum possible negative
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correlation can be achieved as a limiting case. Figure 6 shows a simulation of
100 points distributed according to a Frank copula with q = – 10, together with
the grid generated by the distribution of a pair (X,Y ) with P (1) and P (2) mar-
gins as in Fig. 1 [left].
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FIGURE 5.

FIGURE 6.

For instance, all simulated random points falling into the shaded rectangle
generate the (same) pair (1,2).

Naturally, not only negatively correlated Poisson random variables can be
constructed or simulated this way. Choosing the appropriate copulas (e.g. the
Frank family with q being arbitrary), all possible dependencies and correlations
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can be achieved, even in a multi-dimensional setting. For the problem of posi-
tive correlation with different l1 and l2 (the only non-trivial case), see e.g.
Nelsen [23] or Griffiths et al. [10].

The case of minimal (negative) correlation for identical parameters l1 = l2
(= l, say) also plays a general role for the construction of negatively (and even
positively) correlated Poisson distributed random variables with non-identical
parameters. Suppose, for instance, that (X,Y) is a Poisson distributed pair with
arbitrary dependence structure and margins P (l) each. Let further V and W
be Poisson distributed random variables, independent of each other and of
(X,Y) with parameters m and n, respectively. Then the random variables X + V
and Y +W are also Poisson distributed, with parameters l + m and l + n respec-
tively, and negative correlation 

,
,

< .X V Y W
X Y

r
l m l n

lr
0+ + =

+ +
]

^ ]

]
g

h g

g

If Z is another Poisson distributed random variable with parameter t, inde-
pendent of X,Y,V and W, then 

,
,

X V Z Y W Z
X Y

r
l m t l n t

lr t
+ + + + =

+ + + +

+
]

^ ]

]
g

h g

g

which can even achieve positive values. This shows again that there are many
ways to generate Poisson distributed random variables with the same para-
meters and the same correlation, but with different joint distributions. Like-
wise, if the pair (V,W ) has itself a positive correlation r = r(V,W) = – r(X,Y)
and we have m = n = l, then X + V and Y +W are indeed uncorrelated, but not
independent. Note that such a pair (V,W ) can easily be generated through the
choice V = S + T, W = S + U with independent S,T,U being Poisson distribu-
ted with parameters 

lS = rl, lT = lU = (1 – r)l.

Hence there is obviously a continuum of possibilities to construct uncorrelated,
but not independent Poisson pairs X + V and Y +W with the same marginal
Poisson distribution.

The abovementioned negatively correlated Poisson distributions play an
important role when constructing negatively correlated Poisson processes, as
we shall see in the following section.

4. DEPENDENT POISSON PROCESSES

A very elegant way to describe stochastic counting and – more generally – risk
processes especially in insurance and finance is via the point process approach.
There is a vast literature on this topic, see e.g. Daley and Vere-Jones [6], King-
man [16] or Reiss [25], to mention some monograph references. For a recent
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contribution to this topic, see e.g. Rodrigues et al. [26]. Since in actuarial or
financial applications, the assumption of a finite number of “events” (compris-
ing both the temporal as well as the claims aspect) is sufficient for modeling
in most cases, we will restrict ourselves to this situation. It is, however, easy to
extend all considerations made here to infinitely many “events” by superpos-
ing an infinite family of point processes with a finite number of events each
(particularly with the temporal component being dispersed in pairwise disjoint
“time” intervals).

Definition 4.1. Let N be a non-negative integer-valued random variable and
{Xn}n∈� be a familiy of i.i.d. random vectors with values in �d, independent
of N, for some fixed dimension d ∈ �. Then the random measure

e:z
n

N

X
1

=
=

n
!

is called a (finite) point process with counting variable N and multiple event
points {Xn}n∈�. Here ex denotes the Dirac measure concentrated in the point
x ∈ �d, i.e. we have 

x ∈ A
ex(A) =

,

,

1

0
* for all Borel sets A ⊆ �d.

x ∉ A

The (possibly infinite) measure Ez, given by

Ez(A) = E[z(A)] = E(N)Q(A) for all Borel sets A ⊆ �d,

is called the intensity measure associated with z, where Q denotes the distribu-
tion of the event points {Xn}n∈�.

The point process z is called locally homogeneous on some interval I ∈ �d

if the restriction of the intensity measure Ez to I is a (finite) multiple of the
Lebesgue measure m d over I or equivalently, if the conditional distribution
Q (• |I ) of an event point given it falls into I is a continuous uniform distribu-
tion over I, R (I). ¬

The usual (time-oriented) representation as a counting process {N(t) | t ∈ I}
where I = [0,T ], say, for some T > 0, is obtained for d = 1 via

N(t) = z((0,t]) = #{n ∈ � | 0 < Xn ≤ t}, 0 ≤ t ≤ T,

or, more generally, z(A) = #{n ∈ � |Xn ∈ A} denotes the number of “events”
generated by the {Xn}n∈� within the “time set” A ⊆ I. The advantage of the
measure theoretic approach, however, clearly lies in the fact that distributional
properties of point processes and arithmetic and set theoretic operations on them
can be described more simply. Note that no ordering assumptions on the event
points {Xn}n∈� are necessary, which makes it easy to generalize this theory to
more than one dimension as is suggested by the above definition (for instance,
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if occurrences of more than one type of claims have to be considered, say e.g.
from windstorm, hailstorm, flooding, avalanches etc.). Such topics have already
been discussed extensively in Cox and Lewis [5], however in the more “tradi-
tional” framework, a more modern approach is to be found in Griffiths et al.
[10]; see also Rolski et al. [27]. We shall see in the subsequent chapter that
more generally, also the standard model of collective risk theory is covered by
this approach.

Definition 4.2. A point process z is called a finite Poisson point process, if the
counting variable N is Poisson-distributed with mean l > 0, i.e. PN = P (l). ¬

Note that for d = 1 and I = [0,T ] a locally homogeneous Poisson point proces-
ses z in our sense models exactly the first (random) number of “arrivals” of
an ordinary time-homogeneous Poisson counting process with intensity l which
occur within the “time interval” [0,T ]. If I is any other interval I = [S,T ] with
0 < S < T then z can be considered as a stochastic “cut” of the time window I
from such a Poisson (counting) process with intensity l.

The following theorems list some of the most important properties of Pois-
son point processes, which can e.g. be found in the references listed above.

Theorem 4.3. Let z1 and z2 be independent Poisson point processes with inten-
sity measures Ez1 and Ez2, resp. Then z = z1 + z2 also is a Poisson point process
with intensity measure Ez = Ez1 + Ez2. In particular, if z1 and z2 are locally
homogeneous on the same interval I, then z = z1 + z2 also is locally homoge-
neous on I. z = z1 + z2 is also called the superposition of z1 and z2. ¬

The proof of this theorem relies on the fact that the sum of two independent
Poisson random variables is again a Poisson random variable. Note that in
case of finite intensity measures, the new “event points” from the sum process z
follow a distribution Q which can be expressed as a mixture of the original dis-
tributions Q1 and Q2 of the processes z1 and z2 through

Q
E N E N

E N
Q

E N E N
E N

Q
1 2

1

1
1 2

2

2=
+

+
+^ ^

^

^ ^

^

h h

h

h h

h

where N1 and N2 denote the corresponding counting variables of z1 and z2.

Theorem 4.3 can easily be extended to an infinite superposition of Poisson point
processes, with a proper limit if the resulting intensity measure is s-finite. For
instance, if {zn}n∈� is an independent family of Poisson point processes with Nn
following a Poisson distribution with mean l > 0 each and Qn being a continu-

ous uniform distribution over the interval (n – 1,n] for n ∈ �, then z = zn
n 1

3

=

! is

some (infinite) point process (in a wider sense) which corresponds to the usual
time-homogeneous Poisson counting process with intensity l > 0 (cf. also King-
man [16], p. 16).

MODELING AND GENERATING DEPENDENT RISK PROCESSES 353

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0515036100013726
Downloaded from https://www.cambridge.org/core. IP address: 91.47.94.234, on 31 Oct 2018 at 14:25:36, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0515036100013726
https://www.cambridge.org/core


Theorem 4.4. Let z = e
n

N

X
1=

n
! be some (finite) Poisson point process and {Jn}n∈�

be an i.i.d. family of {0,1}-valued random variables, with P(Jn = 1) = p ∈ [0,1].
Define the point processes z1 and z2 by 

n ne e: , : .J Jz z 1
n

N

n

N

X X1
1

2
1

= = -
= =

n n
! !^ h

Then we have z = z1 + z2 with z1 and z2 being independent Poisson point pro-
cesses each with intensity measures Ez1 = p · Ez and Ez2 = (1 – p) · Ez. ¬

We say that z1 and z2 are independent decompositions of z; z1 and z2 themselves
are also called thinnings of z. W.r.t. simulations of such processes, z1 and z2
can be constructed from the starting Poisson point process z by independent
marking of the event points (with marks “1” and “0” by a random number gen-
erator representing the J-sequence) and group the corresponding event points
with identical marks.

Theorem 4.5. Let z = e
n

N

X
1=

n
! be some finite Poisson point process with d-dimen-

sional event points Xn = (Xn(1), ···, Xn(d )). Then each of the point processes 

( ) , , ,k k dz e 1( )X k
n

N

1
n

$ $ $= =
=

!

is a one-dimensional Poisson point process, with intensity measure Ez(k) given
by

Ez(k)(A) = Ez(�k–1 ≈ A ≈ �d–k) for all Borel sets A ⊆ �.

Conversely, if ( ) , , ,k k dz e 1( )X k
n

N

1
n

$ $ $= =
=

! are one-dimensional Poisson point

processes, then z = e
n

N

X
1=

n
! with Xn = (Xn(1), ···, Xn(d)) for all n ∈ � is a d-dimen-

sional Poisson point process with intensity measure Ez = E(N) · Q where Q
denotes the joint distribution of the Xn. ¬

Note that a similar result holds if more than one-dimensional projections of
the event points are considered.

The last theorem is one key result for the modeling and simulation of depen-
dent Poisson processes, in the conventional sense as counting processes. Here,
the Xn(k) correspond to the times of occurrences of different kinds of “events”,
hence are typically concentrated on �+.

Construction Method I (fixed N). Let z = e
n

N

X
1=

n
! be a Poisson point process with

d-dimensional event-time points Xn = (Xn(1), ···, Xn(d)) whose joint distributions
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for each n are given through a copula CX. Then, according to Theorem 5.3, the

processes ( ) , , ,k k dz e 1( )X k
n

N

1
n

$ $ $= =
=

! are also Poisson, but dependent. For all

Borel sets A,B ⊆ �, the correlation between each two processes z(i) and z( j)
(in the sense of Griffiths et al. [10])1 is given by

, , , , ,i A j B
Q A Q B

Q A B
i j dr z z 1

j

ij

1

#
$ $ $!=] ] ^ ]^

] ]

]
g g h gh

g g

g
! +

where Qij denotes the joint distribution of Xn(i) and Xn( j), and Qi and Qj denote
the marginal distributions of Xn(i) and Xn( j), respectively. Note that the above
correlation is necessarily non-negative. Moreover, when the marginal distribu-
tions of the Xn(k) are fixed, the above expression depends only on the copula CX.
In either case, the correlation does not depend on the distribution of the count-
ing variable N, and there is a non-zero correlation also in case that Xn(i) and
Xn( j) are independent.

A short proof of the correlation formula can be given as follows. Let In(i) =
1{Xn(i)∈A} and In( j) = 1{Xn(j)∈B}. Then the In(i) are independent and identically dis-
tributed as I(i), say with a binomial distribution with E(I(i)) = Qi(A). Likewise,
the In( j) are independent and identically distributed as I( j), say with a binomial

distribution with E(I( j)) = Qj(B). Further, z(i)(A) = ( )I in
n

N

1=

! , z( j)(B) = ( )I jn
n

N

1=

!
with

,l k m N# #

( ) ( )

( ) ( )

( )

E i A j B E I i I j E I i I j

E I i I j E I i I j

E N E I i I j E N N E I i E I j

E I i I j E I i E I j

z z

l l

S S

1

!

n n
n
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N
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N

k

N
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n

N
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2

$ $ $
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= +

== ==

=

!! !!

!
J

L

K
K
K

] ] ^ ]^ ^d ^d
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where l = E(N). It follows that

Cov(z(i) (A), z( j) (B)) = lE (I (i) · I ( j)) + l2E (I (i) · I ( j)) – lE (I (i)) · lE (I ( j))
= lE (I (i) · I ( j))
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processes is understood as a set function, i.e. correlation between the random variables defined
through the corresponding evaluation maps.
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from which the correlation formula follows immediately:

, .i A j B
E I i E I j

E I i I j

E I i E I j

E I i I j

Q A Q B

Q A B
r z z

l l

l

j

ij

1

$ $ #
= = =] ] ^ ]^

]^ ^^

] ^^

]^ ^^

] ^^

] ]

]
g g h gh

gh hh

g hh

gh hh

g hh

g g

g

For related results, we refer to Griffiths et al. [10].

A typical application of such processes in insurance and finance occurs for
instance if multiple events of different kind occur almost simultaneously or with
short delay, or, on the contrary, exclude each other to a large extend. W.r.t.
insurance, one could think of events that are triggered by the same climatic
effect like a strong and geographically extended low pressure system, where
buildings and their content might be affected by windstorm (perhaps with the
delay of one or two days, if the area with insured property is large enough),
and flooding or landslide could occur several days after the storm due to heavy
rainfall. In these cases, copulas inducing high positive correlation are appro-
priate for modeling. The converse (negative correlation) might typically show
up if certain events cannot occur simultaneously (see the subsequent section 5
for a more elaborate example). For instance, in finance, if a portfolio contains
different types of options (e.g. a call and a put with the same strike price),
then these will in many cases not be simultaneously executed upon movements
of stock prices.

A “fine tuning” of such models is also possible, by superposition and thin-
ning as indicated above. For instance, it might happen that flooding will not
necessarily occur with each storm; then the corresponding marginal process for
flooding can be thinned in an appropriate way. It could also be the case that
some of the events are independent of each other; then additional components
can be introduced via superposition of new (independent) processes. Also, it is
possible to restrict the original process to a smaller time window (in particular,
if the process is time-homogeneous), so that the number of occurrences for the
different events in that time window is not the same (but has the same mean).

Construction Method II (variable N’s). This approach is based on the results
in section 3. Here we use different counting variables N1, N2, ···, Nd having a
joint distribution with Poisson margins, governed by an appropriate copula CN

and one-dimensional Poisson processes ( ) , , ,k k dz e 1( )X k
n

N

1
n

k

$ $ $= =
=

! with one-

dimensional occurrence time points Xn(k) which themselves might be depen-
dent, i.e. the components of Xn = (Xn(1), ···, Xn(d)) might again be governed by
a copula CX. In case that the Xn(k) are totally independent the resulting cor-
relation can be similarly expressed as

, , , , , ,i A j B N N Q A Q B i j dr z z r 1i j j1$ $ $ $!=] ] ^ ]^ _ ] ]g g h gh i g g ! +

so that the copula CN plays the dominating role here. As above, we have, by
the independence assumption,
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as stated. Note that unlike in Theorem 4.5, the joint d-dimensional point
process is in general not a Poisson process any more. Note also that in contrast
to construction method I, negative correlations can show up here, which is
occasionally intended.

Applications of such processes in insurance and finance occur if different
portfolios have to be modeled, which have potential influence on each other
without being dependent on identical triggers. This kind of modeling is much
more sophisticated and requires a great deal of prior background information.

5. DEPENDENT RISK PROCESSES

The classical model in the collective risk theory (see Rolski et al. [27]) is described
by a counting process {N(t) | t ≥ 0} and a family {Zn |n ∈ �} of independent
non-negative random variables (claims), independent also of {N(t) |t ≥ 0}. The
risk process (aggregated claims process) {R(t) | t ≥ 0} is then defined by

( ) ,R t Z
( )

n
n

N t

1

=
=

! t ≥ 0.

In case that the counting process is Poisson, this model can easily be sub-
sumed under the approach provided in section 4. In the simplest case, we take

z = e
n

N

X
1=

n
! to be 2-dimensional, the first component of the Xn consisting of the

occurrence times related to the counting process {N(t) | t ≥ 0}, the second com-
ponent consisting of the claims occurring at these times. Likewise, we could
also consider a d-dimensional Poisson process again, where the last d – 1 com-
ponents of the Xn correspond to multiple claims at the same occurrence times.
In any case, it is possible to adapt the construction methods I and II presented
in the previous section in order to treat (dependent) occurrence times and
(dependent) claims simultaneously.

The following picture shows a construction (simulation) of two dependent
locally negatively correlated homogeneous Poisson processes z(1) and z(2) with
intensity l = 1 based on a subsample from the Frank copula in Fig. 6. On the
r.h.s., the corresponding Poisson pairs are shown. The construction for the
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FIGURE 7.

two Poisson point processes z(1) and z(2) follows method II above, by super-
position of indepent locally homogeneous Poisson point processes in the inter-
vals [k, k – 1) for k ∈ {1,2, ···,13}.

6. SUMMARY

The modeling and simulation of dependence structures in insurance and finance
portfolios is a task that cannot be achieved in a simple mechanical way. As was
shown above it is for instance possible to present different constructions of
Poisson and Poisson related processes which show identical behavior w.r.t. cor-
relation, for instance. This means that knowledge of correlations alone is not
sufficient to map the complicated processes observed in the real world into a
(more or less sophisticated) mathematical model. It is therefore necessary to
provide a certain minimal amount of information about the physical or economic
conditions which rule the processes under consideration. With such informa-
tion, however, it becomes possible to select from a broad palette of potential
models based on the point process approach as outlined above, which are flex-
ible enough to cover many important aspects of DFA and IRM, even if a
“perfect” solution will perhaps never be possible.
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