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Abstract

In this paper, we consider the total variation distance between the distributions
of two random sums Sy and Sy with different random summation indices M
and N. We derive upper bounds, some of which are sharp. Further, bounds
with so-called magic factors are possible. Better results are possible when M
and N are stochastically or stop-loss ordered. It turns out that the solution of
this approximation problem strongly depends on how many of the first moments
of M and N coincide. As approximations, we therefore choose suitable finite
signed measures, which coincide with the distribution of the approximating
random sum Sy, if M and N have the same first moments.
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1. Introduction

1.1. Motivation

Random sums have many applications in different disciplines, such as probability
theory, statistics, risk theory, reliability, queueing, biology, and others [see, for exam-

ple, the books by Gut (1988), Gnedenko and Korolev (1996), Rahimov (1995), and
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Kalashnikov (1997)].

If the random summation index assumes large values with positive probability, the
distribution of the corresponding random sum is often difficult to calculate and an ap-
proximation is necessary. One can find many contributions on normal approximations
(for example, see the books by Gut (1988), Kruglov and Korolev (1990), and Gnedenko
and Korolev (1996) and the references therein). But relatively little is known about the
approximation by the distribution of another random sum, even if only the random
summation index is changed. In this paper, we show that this assumption already
allows non-trivial results.

Throughout this paper, we use the following notation: Let X, X3, X5,... be inde-
pendent and identically distributed random variables in R. Set p =1 —¢ = P(X #
0) € [0,1] and S, = }7_, X; for n € Z; = {0,1,2,...}. Let M and N be two
random variables in Z, independent of the X;. We give answers to the following
question: how large is the distance between the distributions P°™ and P~ of Sj; and
Sn? Indeed, the answers strongly depend on how many of the first moments of M
and N are the same. As an approximation of P we therefore choose suitable finite
signed measures, which coincide with P°~, if M and N have the same first moments.

As a measure of accuracy, we use the total variation distance, which is defined by

drv(Q1, Q2) = stép |Q1(B) — Q=2(B)],

where ()1 and @2 are two finite signed measures on the Borel sets of R and the sup
is over all Borel measurable sets B C R. In the case that (); is the distribution of a
random variable Z;, we also write drvy(Z1, Z2) = drv(Q1, @Q2). In particular, we are
interested in bounds for

d-,— = dTv(SM, SN)

By using characteristic functions, it is easily shown that PS™ = PS~_if and only if
M and N have the same distributions or p = 0. The inequalities we search for should
reflect this fact. In particular, our main interest lies in good bounds for a small p.
We encountered the present problem in the excess of loss (XL) reinsurance (see, for
example, Heilmann (1988, 6.2.2, p. 212)): Here, we start from an arbitrary collective
model with claims Y3,Y>,... and claim number M. The aggregate claim is then

given by Z;‘il Y;. Clearly, we assume that, in this context, the Y; are non-negative,
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independent and identically distributed random variables, which are also independent
of M. In the excess of loss reinsurance, each claim Y; (j € {1,...,M}) is divided
between the ceding company and the reinsurer, i.e. the reinsurer has to pay the excess
X; = max{Y; —t, 0} over an agreed retention (priority) ¢ > 0, whereas the ceding
company has to pay the remaining amount Y; — X;. The reinsurer’s aggregate claim is
now given by Sy = Zj\il X, whereby we may assume that p = P(X; > 0) = P(Y; >
t) is small.

The paper is structured as follows. The next two subsections are devoted to the
comparison of our results with those given in the literature; here we consider the general
case and the case that E(M) = E(N) < oco. In Subsection 1.4, we derive suitable finite
signed measures, which will be used as approximations of P5™. In Section 2, we
present the main error bounds, some of which turn out to be sharp. Furthermore, in
the cases when M and N are stochastically or stop-loss ordered we give even better
bounds. (It should be mentioned here that, in the theory of stochastic ordering, the
stop-loss order is also called increasing convex order, cf. Miiller and Stoyan (2002).) In
Sections 3 and 4, we present the proofs.

Note that Theorems 1-3 presented in the following Subsections 1.2 and 1.3 are
special cases of the more general theorems in Section 2 and show the most important
improvements given in this paper; further, Theorems A and B are due to other authors

and need not be proved.

1.2. Known results: the general case

With the help of coupling arguments originally due to Doeblin (1938), a simple
inequality can be derived (cf. Lindvall (1992, Theorem 5.2, p. 19)): a maximal cou-
pling (M',N') of (M, N) exists such that M’ and N’ are independent of the X; and
drv(M, N) = P(M' # N'). Using the above notation d, = drv(Sa, Sn), this leads
to

dr < P(Smr # Sni) < P(M' # N') = drv(M, N), (1)

which also holds in the context of dependent and not necessarily identically distributed
X;. See Finkelstein et al. (1990, Lemma 4) and Vellaisamy and Chaudhuri (1996,
Lemma 3.1), for elementary proofs of (1) in the case that the X; have values in {0,1}

and Z., respectively. Further developments can be found in the paper of Denuit and
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Van Bellegem (2001). Since the bound in (1) is independent of p, it is useless in the
important case of small p. Better results are possible. Qur bounds (16) and (17) below

(see also Remark 1) yield the following;:

Theorem 1. If the X; are real-valued, then, for all m € Z,

d; < pY_Im—n||P(M=n)—P(N =n), 2
n=0

d. SV@§M%FWWHM=M—HN=W- 3)
q n=0

To avoid trivialities, we may suppose that M and N have different distributions. In
this case, it is possible to specify the bounds above by using moments of functions of

a Z-valued random variable Z with distribution

P(Z =n)

|P(M = nl— P_(N =n (n€Zy). (4)

T S IPOM =k - PN =R’
In order to minimize the bound in (2), it suffices to replace m with a median of Z.
In contrast to the bound in (1), the upper bounds in Theorem 1 tend to zero as
p tends to zero, if we assume the finiteness of the respective moments of Z. Note
that, if one is interested in the convergence rate concerning p, (2) is more favourable
than (3) only if Z has finite expectation. Otherwise, if E(v/Z) < oo, (3) can be
used. Similar considerations hold for the other inequalities given below. Note that
all our bounds presented in this paper depend only on p and the distributions of M
and N. In Theorem 5, one can find further inequalities, which in contrast to those
in Theorem 1 and further results below contain differences of distribution functions
instead of differences of point probabilities of M and N, respectively.

For further general results concerning the Kolmogorov metric, see Krajka and Rych-

lik (1987) and the references therein.

1.3. Known results: the case E(M) = E(N) < c©

In this subsection, we always consider the case that

Logunov (1990, p. 588) proved the following theorem.
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Theorem A If (5) holds and the X; are Bernoulli random variables with P(X; =
1) =1-P(X; =0) =p, then

d. <p*» n(n—1)|P(M =n) — P(N =n)|.

n=0
Vellaisamy and Chaudhuri (1996) gave an extension of this result. In particular, by
using Logunov’s ideas, they showed the following statement in the proof of their Lemma

2.1.

Theorem B If (5) holds and the X; have values in Z,, then
dr <3 h(n) [P(M = n) — P(N = n)| (6)
n=0

with h(n) := E(S,(S, — 1)), (n € Z,).

Note that Theorem A is indeed contained in Theorem B, since under the conditions of
Theorem A, we have h(n) = p?n(n — 1). It should be mentioned that, in the proof of
(6), Vellaisamy and Chaudhuri do not need the independence of the Xj.

Let us compare Theorem B with our results. The following inequality follows from

(16) below.

Theorem 2. If (5) holds and the X; are real-valued, then, for allm € Z,
d. <p*Y (n—m)(n—m—1)|P(M =n)— P(N =n)|. (7)
n=0

To minimize the bound in (7), we consider the random variable Z as given in (4), set

n=E(2), (8)
and replace m in (7) with

my = [
As usual, here |z]| denotes the largest integer < z, (x € R). Note that, if the X; are

Z -valued, we have
h(n) = E(Sn(Sn — 1)) = (E(X))*n(n - 1) + nE(X (X - 1)) > p*n(n — 1)

and h(n) can be large or infinite, whereas the lower bound of h(n) is bounded by
n(n —1). Therefore, if we set m = 0 in (7), we obtain a bound, which is better than
(6). As a result, Theorem 2 is a considerable improvement of Theorem B.

From (18) below, an inequality follows, which is much more interesting than (7):
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Theorem 3. If (5) holds and the X; are real-valued, then, for allm € Z,

drg\/_L;qz(m—n+nln(%))P(M:n)—P(N:n)L (9)
n=0

To minimize the bound in (9), replace m in (9) with

_] 1 1
M= —1 ol

where p is defined in (8). Note that my ~ p as p — oo and that ms = |u| = 0 for p
small enough. In order to derive a bound easier than (9), it makes therefore sense to
use (9) with m = |u], which yields

V2p Z+1/2
” drv

or, B[z (0] (10)

A further bound without a log-term can be derived by the help of the easy inequality

E([MJ —Z+ZMhn (ﬁ)) < %

d, <

In combination with (9), this leads to

o0

Y (= |u])’|P(M =n) = P(N =n)|. (11)

p
TS el +172)
Let us compare the order of the bounds in (7) and (11). Letting m = my = |u| in
(7), we see that (11) contains an additional factor (pg(|u] +1/2)) !, which leads to a
better upper bound in the case of pgu being large. Using the terminology of Barbour
et al. (1992, p. 5) in the Poisson approximation, this extra factor can be called a magic
factor.

Observe that it may be difficult to evaluate u. There are however two cases, in
which we easily obtain a formula for y: If M = r € Z, is a constant, we have
p=2"1(r + E(N|N # r)). Further, if PV and PM are mutually singular, i.e.
P(N =n) > 0implies P(M = n) = 0for eachn € Z,, then we have y = 27 'E(N+M).

Example 1. For the rest of this subsection, let us assume that the X; are Bernoulli
random variables with P(X; = 1) = p and that N has a Poisson distribution Po(\)
with mean A € (0,00). This yields Sy ~ Po(p\) and from (5) we obtain E(M) = A.
Under these conditions, one can find further inequalities in the literature. Barbour et

al. (1992, equation (3.8), p. 39) derived the inequality

dry (Sar, Po(p))) < p(1 G )). (12)
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This bound can uniformly be sharpened by modifying the proof of Barbour et al. with
the help of Theorem 1 in Roos (2001), which yields

dtv (Sar, Po(p))) < p(l + %E(M In %) ) . (13)

Here, we set 0ln0 = 0. The bound in (13) is indeed an improvement of (12), since
we have E(M In(M/X)) < Var(M)/X (a more general estimate can be found in Roos
(2001, Lemma 1)). However, in contrast to (10), the bound in (13) is not small when
PM and PN = Po()\) are close. Therefore, our bound (10) (or the better (9)) should
be preferred over (13). Note that, from (9), it is also possible to derive the bound

dTV(SM;PO(p/\))S\/_L;E(Mln M+1/2 N1 N+1/2>,
q

PR S— + .
A +1/2 7 TN 12
which has the same order as (13), if p is bounded away from unity. Indeed, this follows

from the easy observation that, here,

N+1/2
E{NIn{——"F— < 4.
( ! (w +1/2)) =
See Yannaros (1991, p. 163), for another upper bound in this context.

1.4. Suitable finite signed measures
We write

PX = geo + pQ, Q=P(Xe-|X+#0),

where p = 1 — ¢ = P(X # 0) as defined above and ¢, denotes the Dirac measure at
point z € R. The method we use can be understood as a variant of Lindeberg’s (1922)

device. It is based on the use of the finite signed measures

k
Rpm := PV + Zﬁ]mp’(Q — €)™ x PS5 (k,m € Z fixed)
Jj=0

as approximations of P5™  where we assume that
o
> |P(M =n) — P(N = n)|n* < oo, (14)
n=0

such that

im = > (POr =) =PV =) (") (15)

n=0
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is absolutely convergent for all j € {0,...,k}. Here, for a finite signed measure G
on R, we let G*", (n € N = {1,2,...}) denote the n—fold convolution of G and set
G* = €. Further, (3) = I l@=i+1)/i] for j € Z, and z € R. For all m € Zy,
we have Ry, = PV, since o, = 0. More generally, Ry, = PV is valid for
k,m e Zy, if Bom =+ = Br,m = 0. In the important case E(M) = E(N) < oo we
have Bo,m = B1,m = 0 and hence Ry ,, = P~ for all m € Z.

Let us now explain how the Ry ,,, can be found: For fixed k,m € Z,, we have

o0

PH = 3 P(M = n)(e +p(Q ~ €)™

n=0

= Z P(M = n)(Un,k,m + Vak,m) * (€0 + p(Q — €0))™™,

n=0
where we assume for a short while that p € [0,1/2) and set
k n—m : . > n—m . .
Un,k,m = Z ( . )Iﬂ(Q - 60)*J; Vn,k,m = Z ( . )pJ(Q - 60)*J'
= N 7 j=kt1 N 7

Clearly, Uy ,m is a finite signed measure and, since p € [0,1/2), this also holds for
Vik,m- The idea is now to replace P(M = n)Vy g,m with P(N = n)V, k.m, i.e. PS™

will be approximated by

i (P(M =n)Un,k,m + P(N = n)Vn,k,m) * (€0 + p(Q — €)™
n=0
= PSv 4 i (P(M =n)— P(N = n)) Un km * P
n=0
k [e*S)
~ — — n—m *J m
= pS +; (T; (P(M =n)—P(N = n))( ; ))p’(Q—eo) pPS

where these equalities hold, whenever (14) is valid. Since the total variation norm of
Vi ,k,m tends to zero as k — 0o, we expect that the accuracy of the approximation is
increasing in k. The arbitrary parameter m can be chosen to minimize some of our
bounds. Note that, in the presence of condition (14), Ry, ,, is a finite signed measure for
all p € [0, 1]; since we do not need the V}, . any longer, we drop the above assumption

on p and consider from now on p € [0, 1].
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2. Main results
Here and henceforth, we use the following notation. For m,n € Z,., we set
an = P(M =n) — P(N =n), A, =P(M <n)—P(N <n),

m A n = min{m,n}, and m Vn = max{m,n}. Further, for x € R and n € Z,, let
(2)n = H;”;()l (z+7) denote the Pochhammer symbol. As indicated above, whenever we
use the finite signed measure Ry, for k,m € Z given, we assume that >~ |a,|n* <

0.

Theorem 4. Let k,m € Z. Then

< 9k pk+1 n—mal
dre S, Fam) <294 S e (] (16)
If additionally k > 2, ¢ = 1, and
cj = 1 (j eN)
SISV |
then
1 oo
dTV(SM; SN) S 5\/%2 CmVn|an||\/T_n_\/ﬁ|a (17)
n=0
P — n+1/2
< - —_ -
dre(Si, Fam) < Sl (monenin (FI52)), (18)

drv(Sum; Ri,m)

(19)

2/(k +1)! (E)(k+1)/2 = an| |m — nftt
(m+1)g-1 \4 = (VWm+1+Vn+1)?
In the following theorem, we present bounds, which are comparable with those given in
Theorem 4. The main difference is that we replace point probabilities with distribution
functions, i.e. we use A, = P(M < n)—P(N < n) instead of a, = P(M =n)—P(N =

Theorem 5. Let k,m € Z. Then

drv(Sm, Rim) < 2F pPtt Z |An|

n=0

(") &

(j €N),

If additionally k > 2, Cy =0, and
1

G = G mG+1/2/G-1/2)
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then
drv(Sm, Sn) < %\/gg) l::_lla (21)
drv(Su, Rim) < \/—L;qgcmvﬂflﬂ In (%) ; (22)

Remark 1. It is easy to prove that c; in Theorem 4 is increasing in j € Z, and that
1< ¢; <2for all j. Furthermore, as shown in the proof of (29) (see Section 4 below),
C; in Theorem 5 is increasing in j € Z and satisfies the inequalities 0 < C; < 1. The
upper bounds for ¢; and C; can be used to obtain inequalities simpler than (17) and
(22). The terms ¢pvy and Cryyy in (17) and (22) enable us to show the sharpness of
the respective bounds (see Proposition 1 below). The inequalities of Theorem 1 follow
from (16) and (17). If E(M) = E(N) < oo, then, as mentioned above, Ry, = PV for
all m € Z, . Therefore, in this case (16) and (18) yield the inequalities in Theorems 2
and 3.

Proposition 1. If M =0 and N = 1 almost surely, m = 1, and Q = e, with z # 0,
then in (16) and (20) equalities hold. If additionally p = 1/2, then also in (17), (21),
and (22) equalities hold.

In the case that M and N have finite and nearly the same expectations, the single
bounds in (16) with k¥ = 0 and (17) can be sharpened. This can be achieved by using
the triangle inequality

dr =drv(Sum, Sv) < dtv(Sm, Rim) + drv(Rie,m, SN)
with £ =1 and arbitrary m € Z. In particular the following result is valid.

Theorem 6. If M and N have finite but not necessarily equal means, then, for all

m€Z+,
d, < p|E(M—N)|+p22|an|(n—m)(n—m—1),
n=0
1 D P n+1/2
o< =P BN+ 2 S anl(m—n+nl (252,
R TS i )'mq;'a'(m )



On the distance between the distributions of random sums 11

The argumentation above can easily be generalized to moments of higher order. For
example, it is possible to derive inequalities when M and N have the same expectation
and nearly the same variance. Furthermore, similar refinements of (20) with £ = 0 and
(21) can be shown.

We finally present some results in the case that M and IV are stochastically or stop-
loss ordered. It turns out that here better results are possible. As usual, we say that
M is stochastically smaller than N, written M <gr N, if P(M > t) < P(N > t) for
all t € R. Further, M is smaller than N in the stop-loss order, written M <gr, N, if
E(M —t)y <E(N —t)4 for all t € [0,00). Here z; = max{z,0} for z € R. For an
extensive treatment of stochastic orderings, we refer the interested reader, for example,
to Shaked and Shanthikumar (1994) or Miiller and Stoyan (2002).

It is well-known that the distributions of M and N coincide, if one of the following

two assumptions hold:

M <gr N and E(M?®) =E(N%) <oco forsome a>0 or

M <si, N, E(M)=E(N)< oo and Var(M)= Var(N) < oo.

If one of these assumptions is valid, then obviously d, = 0. The following theorem
reflects this fact. Observe that, due to the form of the bounds below, no arbitrary

parameter m occurs.

Theorem 7. (a) Let us assume that M <gsv N. If M and N have finite mean, then
d, < pE(N — M).
If E(VM) and E(V/N) are finite, then
d, < \/g E(VN —VM).
(b) Let us assume that M <g1, N. If E(M?) and E(N?) are finite, then
d, < pE(N — M) +p2E(N(N 1)~ M(M — 1)).
IfE(MIn M) and E(NIn N) are finite, then

d. <pE(N — M)+ -2 E(Nln(N) - Mln(M)).
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Corollary 1. Let us assume that M <g1, N and E(M) = E(N) < co. Then, if the

right-hand sides exist,

d. < pQ(Var(N)—Var(M)),
d, < \/_L;qE(Nln(N)—Mln(M)).

Remark 2. Seemingly, the results of the present paper can be extended using the
discrete s-(increasing) convex orderings, which extend stochastic dominance and stop-
loss order. Indeed, quantities like the ;. (see 15) play an important role in that
framework [e.g. Denuit and Lefevre, 1997; Denuit, Lefevre, and Mesfioui, 1999; Denuit,
Lefevre, and Utev, 1999]. This will be investigated in a subsequent paper.

3. Proofs of the main results

We need some notation. For m,n € Z,, let

_17 if n <m,
(_1)n<m =
Further, let
b(m,n,p) = A%(m,n,p) = (m)p™aq" ™, if n,m € Zy, m <n,
0, otherwise,

and

AIb(m,n,p) = AV Tb(m —1,n,p) — AV b(m,n, p) for j € N.

The discrete Taylor formula for the binomial counting density presented in the following

lemma plays the key role in the method of this paper.

Lemma 1. For k,m,n,r € Zy and p € [0,1], we have

k
b(r,n,p) = > (n ; m)HAjb(r,m,p)
=0
(mvn)—1 n—j—1
= P D 3 ("I A, )

j=mAn
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Proof. The assertion can easily be verified, by using that, for j,n € Z4, p € [0,1],

and complex z € C,

oo

D A¥b(r,n,p) 2" = (2= 1)/ (L +p(z = 1)
r=0

(cf. Roos (2000, formula (26))). Indeed, letting m,n € Z4, p € [0,1], and y,z € C
with |y| < 1/(1 + |#]|), we have

k

ii[ (r,n,p) Z( )p’A’b(rmp)]y

k=0 r=0 j=0
_ (A 4yplz-1)" [( 1+ p(z—1) )"_ ( 1+p(z—1) )m]
1—y 1+yp(z—1) 1+yp(z—1)
= X e S (M) Ayt
k=0 r= j=mAn
Comparing the power series, we see that (24) is valid. [ |

Lemma 2. Let k,m € Zy. If Y oo |an| nk < 0o, we have
oo
— Rim = 9" Y g km Hihs

where Hjj, = (Q — €)***V) x PSi and

j i
_Zan(n I‘Z )7 szS]<m7

n=0

S an(”_,”g_l), ifm < j.

n=j+1

9j,k,m =

Proof. Using Lemma 1, we obtain

k
ka - Zan PS"_Z(n;m>pj(Q_€0)*j*Psm:|

n=0 7=0

[o'e) oo (mVn)—l n__l

=3 Z[’“*l Mpem 3 ( ’ )A’““b(r,j,p)]Q*T
n= =0 j=mAn

oo (mvn)—1 n—j—1
k+1 Z Z n<m( k ) Hj,k

n=0 j=mAn

o0

kel

=p E 9 km Hj g
=0
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where the latter equality follows from the easy observation that

neZy\{m}andje {mAn,...,(mvn)—1}
j€e{0,....m—1}and n € {0,...,5} or
je{mm+1,...}andne{j+1,j+2,...}.
The assertion is shown. [ |

Lemma 3. Let k,m € Z;. We assume that > oo |an|n* < co. Let gjj.m be defined

as in Lemma 2 and set, for j € Z, and p € (0,1),

. k+1)!
fj,k,p :mln{ - ( ) y k}
2v/(j + 1pg1 (pg)B+1/2
Then
drv(Sus Rim) <P |g5kml Fikp- (25)
=0

Proof. Let k,m € Z. From Lemma 2, we derive

oo
drv (Sar, Rem) < P (g5 0ml sup |Hj,r(B)|-
j=0

In Roos (2000, Lemma 4 and formula (41)), it was shown by the help of the Krawtchouk
polynomials, that, for j,k € Z, and p € (0,1),
o
D 1AM b, 4,p) <2 fikp (26)
r=0
Note that in (26) equality holds for j = 0, p = 1/2, and arbitrary k € Z. Later on we

will make use of this observation to show Proposition 1. Now we see that, for j € Z,

k+1+j 1
Z Ak+1b(’f’,j,p) (Q*T(B) - 5) ‘ S fj,k,p:
r=0

sup |Hjx(B)| = sup
which leads to (25). [ |
The following two lemmas are needed in the proofs of Theorems 4 and 5.
Lemma 4. For all k,m,n € Z, we have

-

(mvn)—1

>

j=mAn

(ieh)] e
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The proof of the preceeding lemma is easily done by using generating functions.

Lemma 5. Let k,m,n € Zy, k > 2, and ¢;,C;, (j € Zy) be as in Theorem 4 and
Theorem 5, respectively. Then

(mvn)—1

1
T = mvn - ; 2
j:%:/\n vitl = Vim =/l (28)
(mvn)—1
1 1/2
Z ————= < Chrvn|ln <u> , (29)
jman VD@ +2) m+1/2
(mvn)—1 .
—J 1/2
Z M < m—-n+nln (u)’ (30)
jmman VU+DE+2) m+1/2
(mf%1 [((n—j—k+1)k_1| < 4(k—1)!m - n|* a1
j=mAn U+ Vi N \/(m + 1) 1(vVm+1++/n+ 1)2’
R iRl 4kl m — n|tH! a2)
i VU Den — VD (VmF T+ v+ 1)2

The proof of Lemma 5 is somewhat lengthy and is therefore deferred to Section 4 below.

Proof of Theorem 4. Let us first show that, for k,m € Z,

00 (mvn)—1 .
n—j—1
v B < lal S | @
n=0 j=mAn

Indeed, using (25), we derive

drv(Sm, Rim)

m—1

J . oo ) .
n—j—1 n—j—1
S DD ST e AR5 SHD SR (it 1T
7=0 'n=0 j=m ' n=j+1
m—1 m—1 n—j—]. [eS) n—1 ’I’L—]—].
< Xl | ("7 ) et X el X (") e
n=0 j=n n=m j=m
0o (mvn)—1 n—j—1
= pk+1 Z |an] Z ( 1 > Fikp-
n=0 j=mAn

If we look at the definition of f; 1 , (see Lemma 3), we see that, in order to complete
the proof we must treat the terms

(mvn)—1

2

j=mAn

(mvn)—1

(”—Z—1>‘ and Y |(n —j — k)|

j=mAn (J + 1)k+1
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for k,m,n € Z,. In Lemma 4, we gave a formula for the first term. The second
term was estimated in (28), (30), and (32). The proof of the theorem can easily be
completed with the help of these inequalities and (33). [ ]

Proof of Theorem 5. For k = 0, Lemma 3 leads to

drv(Sum, Sn) < pz |P(M <n)—P(N < n)|min{m, 1},

n=0
which shows (20) in the case ¥ = 0 and (21). Let us now assume that k¥ > 1. In this

case we have

J .
n—j—1 . .
<
An( B 1 ), if0<j<m,

9j,k;m = :o%
” n—j—1 . .
ZAn( k—l)’ if 0 <m <j,
n=j+1
since
n—j—1 J n—j—1 n—j
_ . = -S4,
Sal"77) = -2 -()

S a0 - S (S ()

n=j+1
oo .
n—j—1
- > a0
, k-1
n=j+1
Using the above representation of g; 1., with Lemma 3, we obtain similarly as in the

proof of (33)

0o (mvn)—1 i
n—j—1
drv(Su, Bem) < PP 140l Y ( B ! ) )fj,k,p-
n=0 j=mAn

Using (27), (29) and (31), we arrive at (20) in the case k > 1 and at (22) and (23). &

Proof of Proposition 1. From Lemma 2 we obtain, under the present conditions,

that
A (k +1

P — Ry = (=p)**! )(—1)’“+1j Q.
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Since ) = €, with z # 0, we therefore get, for k € Z,

L 41
drv(Sar, Rim) = 2 > ( i > =28ttt

2 A
Jj=0

which coincides with the right-hand sides of (16) and (20). Now it is easy to verify
that, in the case p =1/2, in (17), (21), and (22) equalities hold. [ |

We omit the proof of Theorem 6, since it is easily done by using some of the assertions

above.

Proof of Theorem 7. Assertion (a) follows from (25). In particular, assuming that

M <gt N, the second part of (a) is shown as follows:

drv(Sm, Sn) < Z(P(N >j)— P(M Zj))% J£q
j=1

oo o0

A
"3
N
]
X
2
I
T
3
=
I
S
|
ﬁ

15555
P _ [P
_ \/jZ\/;(P(N_z) _P(M =) = \/EE(\/JV—\/J\_/I).
Here, we used that
% <2(/i-vi-1), (eN), (34)

which can be derived from

we have here E(N — M) > 0. Since R1 o = P + pE(M — N)(Q — €), it follows from

—~

28). To prove (b), we assume that M <gr, N. In particular,

the triangle inequality that
drv(Sm, Sn) < drv(Su, Rio) +pEN — M).

It therefore suffices to derive some bounds for drv(Sum, Ri,). Since, for all j € Z,

o

9i10= Y an(n—j—-1)=B(M—j—-1)y —B(N —j-1); <0,
n=j+1

we obtain from Lemma 3 the inequality

drv(Sw; Rip) < =20°) gjno=-2p") Y an(n—j-1)
=0 j=0 n=j+1

oo n—1
= —2p*) a,» (n—j—1)
=1 j=0

= PE(NWV-1)- M(M-1)).
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A further bound can be shown by means of the inequality

T — rz—1 T z+1
e (EEUEEYT ) s, el

with the convention 0° = 1 (see Mitrinovié (1970, 3.9.48)). Due to the fact that

gj1,0 < 0for j € Z,, we now have

oo
p 9;,1,0
drv(Sm, Rip) < — . <- Zg_] 10hi(j+1)
V2q iz i+l \f =
p [e] n—1
= ——=—D ) (n—j—-1)h(+1).
L=t 7=0
Since
n—1 n—1 n—1 n—14i—1
tn—j-h(+1) = hi(j+1) = hi(j +1)
j=0 7j=0i=j+1 i=1 j=0
n—1i—1
7+ 2)”2]
= In [ H T——————| =nlan
2(j+1 ’
P gy (5 4 1)26G+D)
we arrive at
drv (S, Ros) < TqE(N In(N) — Mln(M)).
Combining the inequalities above, we see that (b) is valid. [ |

4. Proof of Lemma 5

Proof of (28). Since ¢; is increasing in j € Z, we obtain (28) in the following way:

(mvn)—1 1 (mvn)—1
T = ¢t (VI+1—=/7)
7 %\n J +1 j:%\n ’

IA

Cmvn (\/mVn - \/m/\n) = Cmvn |m_ \/ﬁl

In the proofs of (29) and (30), the following Lemma is needed, the proof of which can
be found in Mitrinovié (1970, 3.6.19 and 2.27).

Lemma 6. The function

$+3/2)7 (z € 0,00))

h = 11
is decreasing in x and satisfies the inequalities

1
< < _
L<ho(o) <1+ 5277 3
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Proof of (29). By Lemma 6, we see that Cj is increasing in j € Z, since Cy = 0

and
1 — j+1/2) 1. (j+1/2>
— = +11n<_ =4/14+-7ln{=
C; JG+DIn {7 j i—1/2
is decreasing in j € N. Hence, for m,n € Z,
(mvn)—1 1 (mvn)—1 ]+ 3/2 n+ 1/2
Y F7=———== Y Ciuh it1/2 < Crvn|In mt1/2))
j=mAn (] + 1)(-7 + 2) j=mAn J m

which shows the validity of (29).

Proof of (30). For (30) it suffices to show that for all j,n € Z,

g1 (o (132 _
ERET 1)"‘1“( 1 (j+1/2) 1)’ %9

since this leads to

(mvn)—1 (mvn)—1

2 o <X, e (5R) )
= m—n+nln(%1l//22).

Inequality (35) can be verified as follows: For n = 0 and arbitrary j € Z the assertion

is trivial. Let us assume that n > 1. If j <n — 1, we have

m—i-1 _ _n _15n1n(?+3/2>_1,
G+DG+2) ~J+1 Jj+1/2

where we made use of Lemma 6. For j > n, we obtain

B U ek N <1+”jn+1(\/j+ —\/j+1))

G+ +2) G+ +2)
n 1 - -
1—j+1<1+j ,—j+2(\/J+2—\/J+1)>a

since 1/n > 1/j. Application of (34) yields
[n—j—1| n ( 1 )
G+0G+2) — j+1 2j(j +2)

n 1
< 1l-—{14+4 —
= j+1( +12(j+1)2—3>
j+3/2>
1-nl :
"n<j+1/2

where we used Lemma 6 again. This completes the proof of (35) and hence that of

(30).

IA
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For the proof of (31) and (32), we need the following lemma, the proof of which is easy
and therefore omitted.

Lemma 7. For jym,n € Z; and 1 <r; <ry, we have

n—j-—ml _ _nlm—n|

: 36
mAnSjHSI%r}fLVn)—I Vi+ra T V/m+4ry—1 ( )
n—j—ri| < rilm—n|. (37)

max

mAn<j<(mvn)—1

Proof of (31). Let us first observe that it suffices to prove (31) only for k£ = 2. This
can easily be verified by using (36): If the assertion is valid for k = 2, then, for k > 2,

Vn)—1 . Vn)—1 . k— . .
(mzn) |(n—J—k+1)k—1|:(m£ |n—j —1| 1—[1|n—g—z|
jomn (G + Di+1 o VDG 2 +3) s Vitit2

< 4m — n|? kl:[l ilm —n|

T Vm+1I(Wm+1+vn+1)? G Vmti+1
4(k—1)!m —n|*

T VDo (Vm+ T+ V1)

To prove (31) for k = 2, it suffices to show that, for j,n € Z,

In—j—1]
VE+DG+2)(G +3)

~A(-Dnorgs |04 ) (g - )+ VTR Vi
< 0, (38)

n(g,n) =

since this leads to

(mVn)—1 i
In—j—1
,-:;M Vi+DG+2)(G+3)
(mVn)—1
< ‘_Z 4(=n<m [(n+1)( /—j1+1 - /—j1+2) +\/jT_\/j+—2
4(m —n)?

Vm+1(vVm+1+/n+1)2°
We now prove (38). For j,n € Z,, we have

1-4/FF3/j+2-Vi+1)—j-1
VE+DG+2)(G +3)

) = (~Dareg ["
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Since

1-4j+3(ji+2-+/j+1) <0
for all j € Z, we see that
77(.770) < 77(.77 1) << 77(.77.7)7 U(J;J + 1) > 77(.77.7 +2) > ...

Therefore it suffices to show that n(j,n) < 0 holds for n € {j,j + 1}. If n = j, we

obtain
Gy = L [ 1 ~ 4
T = e G nG +9) it I+iT 2P
1 1 4
\/j+_2[j+3/2_2(2j+3) -

If n=j+1, we have

i) = HIEE AR o,

The proof of (31) is completed.

Proof of (32). For k,m,n € Z with k > 2, we obtain by using (37) and (31)

(mvn)—1 (mvn)—1

—j—k —j—k+ 1)
L T heF Bt /81
j=mAn (-7 + 1)k+1 j=mAn (.7 + 1)k+1
4k!|lm — n|F+!
Vim+ D (Vm+1+vn+1)2
Therefore (32) is valid. The proof of Lemma 5 is completed. ]
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