On Error Bounds for the Approximation of Random Sums

Topic 4: Other

Roos, Bero
Fachbereich Mathematik, SPST, Universitdt Hamburg,
Bundesstr. 55, 20146 Hamburg, Germany.
Tel.: +49 40 42838 4925, Fax: +49 40 42838 5260,

E-mail: roos@math.uni-hamburg.de

Pfeifer, Dietmar
Fachbereich Mathematik, Universitat Oldenburg, 26111 Oldenburg, Germany.
Tel.: +49 441 798 3229, Fax: +49 441 798 3004,

E-mail: pfeifer@mathematik.uni-oldenburg.de

Abstract

We present bounds for the total variation distance between the distributions
of random sums with different random summation indices. The summands are

assumed to be nonzero with small probability.

Key words and phrases. Excess of loss reinsurance, finite signed measures, random

sums, total variation distance, upper bounds.



On error bounds for the approximation of random sums 2

1 Introduction

In this paper, we consider the approximation of the distribution of a random sum with
independent and identically distributed summands, which are nonzero with small proba-
bility. Such random sums appear, for example, in the excess of loss (XL) reinsurance (see,
for example, Heilmann (1988, 6.2.2, p. 212)): We start with an arbitrary collective model
with claims Y7, Y, . . ., random claim number M and aggregate claim Ej]\il Y;. Clearly, the
Y; are non-negative, independent and identically distributed random variables, which are
also independent of M. In the excess of loss reinsurance, each claim Y; (5 € {1,...,M})
is divided between the ceding company and the reinsurer, i.e. the reinsurer has to pay the
excess X; = max{Y; —t, 0} over an agreed retention (priority) ¢ > 0, whereas the ceding
company has to pay the remaining amount Y; — X;. The reinsurer’s aggregate claim is
now given by Sy = Ej]‘/il X, whereby we may assume that ¢ is large enough such that
p=P(X; >0) =P(Y; > ?) is small.

In what follows, we consider a somewhat more general situation. In fact, the sum-
mands can also assume negative values. Let X, X;, X5, ... be independent and identically
distributed random variables in R. Set p=1—-¢=P(X #0) € [0, 1] and S, = ¥}_, X;
forn € Z, = {0,1,2,...}. Let M and N be random variables in Z, independent of
the X;.

One can find several contributions on the normal approximation of the distribution
L(Sy) of Sy (e.g. see Gut (1988), Kruglov and Korolev (1990), and Gnedenko and
Korolev (1996) and the references therein). But also the (compound) Poisson approxi-
mation (e.g. see Logunov (1990), Yannaros (1991), Barbour et al. (1992, equation (3.8),
p- 39) and Vellaisamy and Chaudhuri (1996)) was already considered. Here, the summa-
tion index M has to be replaced with an independent Poisson Po(t) distributed random
variable, say N. Intuitively, we expect a good approximation when we choose a Poisson
distribution with the same mean as M, i.e. t = E(M), provided E(M) is finite. A further
improvement of the approximation can be expected when also the variances of M and N
coincide. But this would mean that Var(M) = E(M), which is rarely the case. Therefore,
in this context, it is better to allow the random variable N to have another distribution

than the Poisson. This is the main subject of this paper.
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In order to make the approximation results mathematically precise, we use the total

variation distance

drv(Q1, Q2) = SB‘P 1Q1(A) — Q2(A)] (1)

between probability distributions ); and ()5 on the line, where the supremum is over all
Borel measurable sets A C R.. If Z;, (i = 1,2) are random variables with distributions @;,
then we set drv(Z1, Z3) = drv(Q1, Q2). In what follows, we shall discuss upper bounds

for the distance

d, := dTV(SM, SN),

where N has an arbitrary distribution on Z,. The following lemma shows that it is
reasonable to expect upper bounds for d,, which are small when p is small or when the

distributions of M and N are close. In what follows, let 4 denote equality in distribution.
Lemma 1 S;, 4 Sy if and only if M i N orp=0.

Proof. The if part is obvious. The only if part can be show as follows: Let us assume
that Sy < Sy and that p # 0. If, for the characteristic function ¢x () = BE(eX) of X,
lox(t)| =1 for all t € R, then X =: ¢ # 0 is a.s. constant (see Lukacs (1970, Theorem
2.1.4, p. 18)), so that, in this case, Mc¢ L5y 2 Sy L Ne, giving M L N. Let us now
assume that ¢y € R exists such that |px(to)| < 1. Set B = {z € C||z| < 1}. Since
¢x is continuous, the set A := BN ¢x(R) has infinitely many elements and contains
limit points. Let denote 1, and 1, the probability generating functions of M and N,
respectively. Because of A C {z € C|9Yum(2) = ¥n(2), |z| < 1}, we obtain 1y = 1y on
B and therefore M £ N also in this case. O

It should be mentioned that there is a ad hoc bound, which can easily be shown
with the help of coupling arguments originally due to Doeblin (1938) (cf. Lindvall (1992,
Theorem 5.2, p. 19)), giving

d; < dpy(M, N). (2)

But, since the bound in (2) is independent of p, it is useless if p is small. In this case,

there are better estimates.
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2 The case E(M) =E(N) < o
We have shown the following theorem.

Theorem 1 IfE(M) = E(N) < oo, then, for allm € Z,
d, <p* Y (n—m)(n—m—1)|an, (3)
n=0
where a, = P(M =n) —P(N =n), (n € Z,).

This result is in fact a considerable improvement of bounds given by Logunov (1990,
p. 588) and Vellaisamy and Chaudhuri (1996, proof of their Lemma 2.1). In fact, their
bounds are comparable with our bound, where m = 0. It is not difficult to show that, in
order to minimize the bound in (3), we must set m = ||, where p is the expectation of

a random variable Z with

and |z| denotes the largest integer < z, (z € R).

The bound in Theorem 1 can be simplified:

Corollary 1 If E(M) = E(N) < oo, then, for allt € R,
d; SpQZ(n—t)Q‘anL (4)
n=0
Proof. In the case t € (—oo, 1/2], the assertion follows from (3) with m = 0, since,
forn € Z;, n(n —1) < (n —t)%. Let us now consider the case t € (1/2, c0). Let
a=t+1/2—|t+1/2] €]0,1] and m = [t +1/2] — 1 € Z,. By using (3) we obtain

d: <p*> [(1—a)(n—m)(n—m—1)+a(n—m—1)(n—m—2) ||
n=0
<3 (n—(m+2+a)) el
B n=0 2
Since t = m + 1/2 + «, the proof is completed. O

It is well-known that (4) will be minimized by using ¢t = E(Z). This yields

d. < 2p*dry(M, N)Var(Z),
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where we used the well-known fact that drv(M, N) = 27132 |a,|. In particular, we
learn that, here, d, is of order O(p?) as p — 0 when dyy(M, N)Var(Z) is bounded. But
what can be said when this term is large or infinite? The following theorem shows a

further inequality, which can be useful in this case.

Theorem 2 IfE(M) = E(N) < oo, then, for allm € Z,
P n+1/2
dy < —— (m—n+nln<7))an. 5
S Ve, m+172))1%! ®)
Clearly, the bound in this theorem exhibits only the order O(p), but the accompanying

factor can be very small. For example, letting m = ||, we obtain, from (5),

d, < %dTv(M N)E[Zln( Z+1/2 )] (6)

lu] +1/2
In order to compare the order of the bounds in (4) and (5), we derive from (5) a further
bound without a log-factor.
Corollary 2 IfE(M) = E(N) < oo, then

V2p
S+ 12)

Proof. The assertion can be shown with the help of the simple inequality

drv(M, N)E(Z — |p])*. (7)

Z+1/2 E(Z — |n))*
E<L“J_Z+ZIH(LMJ+1/2)>< PESER 0
Letting m = |u] in (4), we see that (7) contains an additional factor
1
Vo] +172) ®

which leads to a better upper bound in the case of pgu being large.

Example 1 If M = m, (m € Z,) is almost surely constant and E(N) = m, then we

obtain from Corollary 1 and Theorem 2 that

d, < pZmin{\/_—pqE(Nl N%//Z) Var(N)}
< Var(N)p? min{ﬂpq(;—l- 172) 1}.

For the second inequality, we used the simple fact that In(1 + z) < z for z > —1. If
additionally N is Poisson Po(m) distributed, then Var(/N) = m. In this case, we obtain
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an upper bound, which cannot be improved much for p being sufficiently small, since
as shown by Barbour and Hall (1984), here, d, and min{p, mp?} have the same order,
provided that the X; are Bernoulli distributed with success probability p. In fact they
proved the inequalities > min{p, mp?} < d; < min{p, mp?}. Note that their upper
bound also holds for general X; (see Le Cam (1965, p. 187) or Michel (1987, p. 167)).

3 The case E(M’) =E(N’) < oo for j = 1,2

Above, we mentioned that the precision of approximation should increase when we use
a random variable N having the same expectation and the same variance as M. As in

the previous section, we shall present two bounds for d,. For j € Z, and x € R, set

(7)) =oil(@ — i+ 1)/4).
Theorem 3 If, for all j € {1,2}, E(M’) = E(N?) < oo, then, for arbitrary m € Z.,

(") &

< 26 @yﬂ“ @] [~ nf?
n=0 (

TS Vm+1\g Vm+14+vn+1)?

dr < 4p* > |ay,|

n=0

(10)

We see that the first bound has the order O(p®) as p — 0, when dryv(M, N)E(|Z —
|1£]|?) is bounded, whereas the second bound exhibits only the order O(p*?). However,
comparing the bounds, we see that (10) contains a extra factor having at least the order
(pg(| ] + 1))~3/2, which coincides, up to constants, with the factor (8) of the previous
section to the power 3/2. Therefore, (10) is better than (9), if pgu is large.

Example 2 In the important case s := Var(M) > E(M) =: ¢t > 0, we can use a negative
binomial NB(g, o) distributed N with parameters ¢ € (0,1) and « € (0,00) and with the

probabilities

a+m—1

Nm%wamnz( )u—@%ﬂ (m € Z.).

m

With this definition, we have E(N) = a/f and Var(N) = «(8! + 572), where § =
(1 —¢q)g'. Therefore, equality of the first two moments of M and N can be achieved by
setting ¢ := (s —t)/s and a :=t?/(s — ).
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4 Idea of the proofs of Theorems 1-3

The theorems given above are easy consequences of a more general result on the approx-

imation with finite signed measures. Let us write
P* = geo + pQ, Q=PX e-|X#0),
where ¢, is the Dirac measure at point x € R. We use the finite signed measures
Ry := PV + zk: Bim P (Q — 0)* » P, (k,m € Z, fixed),

j=0

where we assume that
o0

> lag|n* < oo, (11)

n=0

such that
Bim = i n <n - m) (12)
n=0 J
is absolutely convergent for all j € {0,...,k}. Here, for a finite signed measure G on R,
let G**, (n € N =1{1,2,...}) denote the n—fold convolution of G and set G** = &,.

One of the most important properties of these signed measures is that Ry, = P°¥
for all m € Z, and that, more generally, Ry, = P for m € Z, and k € N, if
E(M’) = E(NY) for all j € {1,...,k}. This means, that if E(M) = E(N) < oo,
then Ry,, = P for all m € Z,. Further, if E(M?) = E(N’) < oo for j € {1,2},
then Ry ,, = PSv for all m € Z,. Therefore, under these assumptions, bounds for the
approximation error between £(Sy) and Ry, are also bounds for d,.

For the main result in this section, we use the following notation. For m,n € Z,
set m V n = max{m,n}. Forz € R and n € Z,, let (z), = [[}5;(z + j) denote the
Pochhammer symbol. Let the total variation distance between two finite signed measures
be defined as it was given in (1) for probability measures. As indicated above, whenever
we use the finite signed measure Ry, for k,m € Z,, we assume that 3, |a,|n* < oco.

Theorems 1-3 are immediate consequences of the following theorem.

Theorem 4 (Cf. Roos and Pfeifer (2003)). Letk,m € Z., co =1, and ¢; = ﬁ €
J=\/i0-
[1, 2], (j € N). Then

> n—m
drv(L(Sm), Rim) < 2813 Jan| (k 41 ) ‘ (13)
n=0
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If additionally k > 2, then
(S, $3) < 517 3 G loa] [V = i, (14)

dov(L(Sar), Rupm) < Tnoo \an|(m— n+nln (%11//22)) (15)

P (p>(k+1)/200 |an| |m — n|**!
(m + 1)p_1 \4 = (Vm+1+yvn+1)2

drv(L(Sm), Rem) < (16)

Clearly, using (13) with k¥ = 0 and (14), it is also possible to give bounds for the approx-
imation error d, in the case, where E(M) and E(N) are not necessarily equal. Further,
note that the constant 1/2 in (14) is best possible. From Theorem 4, we see that the ac-
curacy of approximation by Ry ,, that is to say the convergence rate for p — 0, increases
with k. But, with the help of (13), we see that, under certain assumptions, the distance

in fact converges to zero as k — oc:

Corollary 3 Ifp < 1/2 and if all moments of Z exist such that hm EiﬁkL+ =0, then,

(k+1)!
forallm e Z,,
k]lglo dTv([,(SM), Rk,m) =0.
In particular, letting m = 0, we have
< M, N)E|——F——|.
vy (£(Sw), Reo) < drv(M, N) B
Proof. Using (13), we obtain
+k (2pz)k+1
< k1 [T ( )]
dre(£(5u), Rugn) < (01, )2 (3 1) 4+ B( G2 S 1(2))

where, for a set A, 14(Z) =1 when Z € A and 14(Z) = 0 otherwise. The assumptions
show that the right-hand side tends to zero as k£ — 0. This yields the first assertion. The

second assertion is clear. O

Note that the second assumption of Corollary 3 is valid when we assume that the moment

generating function E(e'?) of Z is finite for ¢ = 2p.

5 Consequence of Theorem 4: Asymptotic result

Using Theorem 4, it is possible to show several asymptotic results. In what follows, we

present the simplest one of them under the condition that the summands X; assume only
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two values, i.e. zero and x # 0, say. With other words, Q) = ¢,.

Theorem 5 IfE(M) = E(N) < oo and if Q = &, with x # 0, then, for allm € Z,

dT—p2|Var(M)—Var(N)\| <p? [4 > an)
n=0

<n _3 m) ‘+2m(1+2p)m‘1IVar(M) —Var(N)|] '

Proof. Under the above assumptions, we have S, ,, = (Var(M) — Var(N))/2. Therefore

d, — p?*|Var(M) — Var(N)” <

dr — drv(Rom, Rl,m)‘ + ‘dTV(RZ,m; Rim) — 2p2|52,m||-
It is easy to show that the second term on the right-hand side is bounded by
2mp® (1 + 2p)™ " |Var(M) — Var(N)|.

Since d,; = dpv(L(Sn), Rim), the first term is bounded by drv(L(Sy), Ram). Using

(13), the assertion is proved. 0
Corollary 4 IfE(M) = E(N) < 0o, Q =&, with x # 0, and E(Z3) < co, then

d. = p*|Var(M) — Var(N)| + O(p®), p — 0.
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