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Modeling dependence in finance and insurance: the copula approach 
 

Dietmar Pfeifer and  Johana Nešlehová (Oldenburg) 
 
 

1. I n t r o d u c t i o n 
 

The concept of “copulas” is not really a new one in the mathematical world. It goes essen-
tially back to problems posed by Hoeffding and Fréchet more than 60 years ago concerning 
the maximal and minimal possible correlation for bivariate distributions when the marginals 
are fixed, or, more generally, upper and lower bounds for the joint distribution under this con-
dition. A related question originally posed by the Italian geometrist Pompilj concerns the 
minimum of the La -distance of random variables X and Y, i.e. the minimum value of 

E X Y
a

- when the marginal distributions XF  and YF  are given. It was actually this approach 

which lead to the concept of “minimal metrics” in the important field of probabilistic metric 
spaces and the thorough investigation of copulas, see e.g. Schweizer and Sklar [24] or Zolo-
tarev [27] for an extended exposition. The word “copula” however was seemingly first coined 
by Sklar in his famous 1959 paper [26]. (For a nice survey over the historic development of 
copulas we refer to the monograph of Dall’Aglio et al. [5].) 
The “rediscovery” of copulas in particular in finance and nowadays also in insurance is per-
haps due to the need of a more sophisticated analysis of the joint temporal behaviour of assets 
and the valuation of portfolios containing them, together with the development of applicable 
mathematical tools in fields like IRM (Integrated Risk Management) and DFA (Dynamic Fi-
nancial Analysis). Besides the establishment of regulatory standards on a legislative basis in 
the European markets, the development of largely extended personal computer capacities in 
the last decade has in particular enforced such a development. A transfer of real-world-
processes into a large-scale computer model e.g. in order to simulate the development of a 
balance sheet over time becomes more and more “easy” today. With the progress made on the 
hardware side, the challenges for a proper mathematical modeling of all kind of complex fi-
nancial and actuarial structures increase likewise. A very thorough review of copulas and their 
applicability to risk management in particular can be found in Embrechts et al. [9]. 
For the common user of statistical methods, “correlation” is perhaps the first probabilistic 
notion to remember, in particular since this kind of “dependence” concept has introduced it-
self at large to the financial markets, supported by theoretical approaches like the Capital As-
set Pricing Model (CAPM) and the Arbitrage Pricing Theory (APT). This is due to the fact 
that these theories are founded on the “normal” world where in the multivariate setting, the 
joint distributions are indeed characterized by pairwise correlation (or covariance, resp.). This 
is not only no longer true outside that world, but also very misleading results can be produced 
when the concept of correlation is applied without caution, as has been pointed out in several 
papers in the recent past (see e.g. Embrechts et al. [7], [8], or Blum et al. [3]). It seems there-
fore necessary to propagate the ideas behind copulas as “the” standard tool of description of 
all kind of dependence structures to a wider audience, in particular in insurance-linked 
branches. It is remarkable to see that both in expensive training seminars organized for pro-
fessional staff as well as in national and international congresses on risk theory copula-based 
models are gaining increasing interest. 
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2.   B a s i c   f a c t s   a n d   a   s t a r t – u p   e x a m p l e 

 
This section is devoted to some simple mathematical considerations in order to make the 
reader a bit more familiar with the underlying mathematical framework. To start with, we 
present the usual definition of a copula due to Sklar, together with his central characterization 
theorem. 
 
Definition 2.1. A copula is a function C  of n variables on the unit n-cube [0,1]n  with the 
following properties: 
 

1. the range of C is the unit interval [0,1] ; 

2. ( )C u  is zero for all u  in [0,1]n  for which  at least one coordinate  equals  zero; 

3. ( ) kC u=u  if all coordinates of u  are 1 except the k-th one; 

4. C  is n-increasing in the sense that for every £a b  in [0,1]n the measure CD b
a  as-

signed by C  to the n-box 1 1[ , ] [ , ] [ , ]n na b a b= ´ ´a b   is nonnegative, i.e. 
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As can be easily seen, a copula is in fact a multivariate distribution function with univariate 
uniform margins restricted to the n-cube. Copulas have many useful properties, such as uni-
form continuity and (almost everywhere) existence of all partial derivatives, just to mention a 
few (see e.g. Nelsen [17], Theorem 2.2.4 and Theorem 2.2.7). Moreover, it can be shown that 
every copula is bounded by the so-called Fréchet-Hoeffding bounds, i.e. 
 

1 1 1max( 1,0) ( , , ) min( , , )n n nu u n C u u u u+ + - + £ £    

 
which are commonly denoted by   and   in the literature. In two dimensions, both of the 
Fréchet-Hoeffding bounds are copulas themselves, but as soon as the dimension increases, the 
Fréchet-Hoeffding lower bound   is no longer n-increasing. However, the inequality on the 
left-hand side cannot be improved, since for any u  from the unit n -cube, there exists a copula 
Cu  such that ( ) ( )C= uu u�  (see Nelsen [17], Theorem 2.10.12).  

The most well-known copula is perhaps the so-called independence copula, 
1

( )
n

i
i

u
=

P = u , 

which has for centuries been the standard copula in statistics and probability for modeling 
sequences of independent experiments. 
 
 
The following theorem due to Sklar  justifies the role of copulas as dependence functions: 
  
Theorem 2.2 (Sklar). Let H denote a n-dimensional distribution function with margins 

1, , .nF F  Then there exists a n-copula C such that for all real 1( , , )nx x , 

 
( )1 1 1( , , ) ( ), , ( ) .n n nH x x C F x F x=   
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If all the margins are continuous, then the copula is unique, and is in general determined 
uniquely on the ranges of the marginal distribution functions otherwise. Moreover, the con-
verse of the above statement is also true. If we denote by 1 1

1 , , nF F- -  the generalized in-

verses of the marginal distribution functions, then for every 1( , , )nu u  in the unit n-cube, 

 

( )1 1
1 1 1( , , ) ( ), ( ) .n n nC u u H F u F u- -=   

 
For a proof, see Nelsen [17], Theorem 2.10.9 and the references given therein. 
 
Note that in terms of the original distributions, the Fréchet-Hoeffding bounds above translate 
into 
 

1 1 1 1 1( ( ), , ( )) ( , , ) ( ( ), , ( )).n n n n nF x F x H x x F x F x£ £     

 
Sklar’s theorem essentially states that in the multivariate setting, marginal distributions of and 
dependence between observations can be treated separately. This is of great importance for all  
practical actuarial work, since at least the analysis of marginal distributions is a standard task 
for actuaries, e.g. in (re)insurance for estimating the PML (probable maximum loss) of a port-
folio as a certain high quantile of the loss distribution (in finance, VaR (value at risk) is a 
similar concept). After a suitable identification of the marginal distributions by statistical 
methods, a component-wise transformation of the data via the inverse c.d.f.’s extracts the de-
pendence structure as a copula, which can be analyzed afterwards by further appropriate tools. 
 
As an introductory example, suppose that the random vector ( ),X Y  has a bivariate triangular 

distribution, i.e. ( ),X Y  possesses a joint density h of the form  

 

[ ]2
2, 1

( , ) for ( , ) 0,1 .
0, otherwise

x y
h x y x y

ì + £ïï= Îíïïî
 

 
The support of the joint distribution is the triangle formed by the three points (0,0), (1,0) and 
(0,1). It is easy to see that in this case, both X and Y have univariate triangular distributions 
themselves, with marginal densities  
 

[ ] [ ]( ) 2(1 ), 0,1 and ( ) 2(1 ), 0,1 .f x x x g y y y= - Î = - Î  

 
For the corresponding c.d.f.’s, we obtain by integration: 
 

[ ] [ ]

[ ]22

( ) (2 ), 0,1 , ( ) (2 ), 0,1

2 , 1
and ( , ) for ( , ) 0,1 .

2 (1 ) , 1

F x x x x G y y y y

xy x y
H x y x y

xy x y x y

= - Î = - Î

ì + £ïï= Îíï - - - + >ïî

 

 
If we want to express the joint distribution of ( ),X Y  by their marginals, i.e. we want to find a 

solution of the equation 
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( ) [ ]2( , ) ( ), ( ) for ( , ) 0,1H x y C F x G y x y= Î  

 
with a suitable copula C, then we can proceed as follows: substituting ( ), ( ),u F x v G y= =  

we find as feasible solutions 1 1 , 1 1 ,x u y v= - - = - -  hence  
 

( ) ( )( )1 1
2 1 1 1 1 , 1 1 1

( , ) ( ), ( )
1, 1 1 1

u v u v
C u v H F u G v

u v u v

- -
ìï - - - - - + - ³ïï= = íïï + - - + - <ïî

 
 

for [ ]2( , ) 0,1 .u v Î From this, we also obtain a density c of the above copula by two-fold dif-

ferentiation: 
 

2
1

, 1 1 1( , ) (1 )(1 )( , )

0, 1 1 1.

ìïï - + - ³ï¶ ï - -= = íï¶ ¶ ïï - + - <ïî

u vC u v u vc u v
u v

u v

 

 

 
Fig. 1: density c of Copula C 

 
Let now ( ),U V  be distributed according to the copula C. We can think of ( ),U V  as a non-

linear transformation of ( ),X Y  via (2 ), (2 ).U X X V Y Y= - = -  Since U and V are both 

uniformly distributed, their correlation is given by 
 

( )Cov( , )
corr( , ) 12 ( ) 3 12 (2 )(2 ) 3.

Var( ) Var( )

U V
U V E UV E XY X Y

U V
= = ⋅ - = ⋅ - - -  
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Now 
 

( )
1 1

1 0 0
0 , 1

1
2

0

(2 )(2 ) 2 (2 )(2 ) 2 (2 ) (2 )

2 19
(2 )(1 ) (2 ) ,

3 90

x

x y

x y

E XY X Y xy x y dx dy x x y y dy dx

x x x x dx

-

+ £

£ £

- - = - - = - -

= - - + =

òò ò ò

ò

 

 

hence ( ) 7
corr( , ) 12 (2 )(2 ) 3 .

15
U V E XY X Y= ⋅ - - - = -  The following construction serves 

to find another pair of random variables ( ),U W  (with copula D, say) which has this same 

correlation 
7

corr( , ) ,
15

U W = -  but has a totally different joint distribution than ( ), .U V  For 

this purpose, we consider the approach mod 1W U b= +  with some appropriate constant 

( )0,1 ,b Î  i.e. we consider 

 

1

, 1

1, 1 U b

U b U b
W U b

U b U b + >

ì + + £ïï= = + -íï + - + >ïî
1  

 
with the indicator r.v. A1  for some set A. Note that by shift-invariance of Lebesgue measure, 

W is also uniformly distributed but in general dependent of U. [Such constructions are well-
known in the literature, see e.g. Nelsen [17], chapter 3.2.]  For the correlation corr( , ),U W  
this means 
 

( )( )
1

1

1

2 2

corr( , ) 12 ( ) 3 12 3 1 6 12

5 6 6(1 ) 6 6 1 6 ( 1) 1.

X b

b

U W E UW E U U b b x dx

b b b b b b

+ >

-

= ⋅ - = ⋅ + - - = + -

= - + + - = - + = - +

ò1
 

 

Solving this equation for corr( , ) ,U W r=  we obtain 
1 1

3 6
2 6

b r= + +  in the range 

1
,1 .

2
r

é ù
ê úÎ -
ê úë û

 For the case above, this gives the value 
1 5

0,57543
2 30

b = + =   

 
The following graph shows 5000 simulations of pairs of the type ( ),U V  (solid points) and 

( ),U W  (dotted points) each. 
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Fig. 2: simulation study of copulas C and D 
 

As is clearly to be seen, correlation does not at all characterize the joint distributions of this 
example. Note even that the support of the distribution of the pair ( ),U W  is singular w.r.t. 

Lebesgue measure (i.e. concentrated on a set of measure zero), so that no joint density exists 
here. Some easy calculation shows that the copula D belonging to ( ),U W  is given by 

 

( ) ( )

0, 1 ,

min( , ), 1 ,
, ,

min( 1, ), 1 ,

1, 1 , .

u b v b

u v b u b v b
D u v P U u W v

u b v u b v b

u v u b v b

ì £ - £ïïïï - £ - >ï= £ £ = íï + - > - £ïïï + - > - >ïî

 

 
Note that both of the copulas C and D coincide partly with the Fréchet-Hoeffding lower 

bound ,  namely in the range 1 1 1u v- + - <  for C and in the ranges 1 ,u b v b£ - £  
and 1 ,u b v b> - >  for D (due to the fact that no probability mass is given to the correspond-

ing regions in the “north-east corner” each). On the contrary, for the limiting cases { }0,1 ,b Î  

D coincides everywhere with the upper Fréchet-Hoeffding bound ,  i.e. in the case where 
W U=  almost surely. 
 

 
 
 

b
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3.   C o p u l a s   a n d   d e p e n d e n c e   m e a s u r e s 

 
In the bivariate case, both the Fréchet-Hoeffding bounds as well as the independence copula  
have the following stochastic representation, as was already noticed by Hoeffding [12]: 
 
Theorem 3.1. Let U  and V  be random variables uniformly distributed over the unit interval 
[0,1]. Then their joint c.d.f. restricted to the unit square 2[0,1]  is equal to  
 
 ,  if and only if U  is almost surely a decreasing function of V, 

  P, if and only if  U  and V  are independent, 

 ,  if and only if U  is almost surely an increasing function of V.  
 

I.e., every bivariate dependence structure lies somewhere between two extremes, the perfect 
negative and the perfect positive dependence. In light of this fact copulas can be partially or-
dered in the following way: 
 
Definition 3.2. A copula 1C  is smaller than a copula 2C , in symbols: 1 2C C , if  for any u  

in the unit square  2[0,1] , 1 2( ) ( )C C£u u .  

 
As mentioned above, copulas reflect the dependence structure between the margins, and are 
therefore of great use in various dependence and association concepts. For instance,  the well 

known bivariate concordance measures Kendall’s t and Spearman’s r  (rank correlation) as 

well as the likelihood ratio dependence and tail dependence concepts (see section 5 later) can 
be expressed in terms of the underlying copula alone. However, the role played by copulas in 
the study of multivariate dependence is much more complex and far less well understood (for 
further details see Mari and Kotz [16], Nelsen [17] or Joe [13] and the references given 
therein). 
 
Motivated by the introductory example and its historic importance, we will first focus on the 
Pearson correlation as a special bivariate well-known dependence measure, given by 
 

Cov( , )
corr( , )

Var( ) Var( )

X Y
r X Y

X Y
= = . 

 
It is easily seen that r does not depend on the underlying copula alone and will therefore be 
influenced by the marginal distributions as well. However, the following result from 
Hoeffding [12] suggests that the role played by copulas in this setting will nevertheless be 
important. 
 
Theorem 3.3. Let ( , )X Y  be a bivariate random vector with a copula C  and marginal distri-
bution functions F  and G . Then the covariance between X  and Y  can be expressed as 
 

Cov( , ) [ ( ( ), ( )) ( ) ( )]

[ ( ( ), ( )) ( ( ), ( ))] .

X Y C F x G y F x G y dx dy

C F x G y F x G y dx dy

¥ ¥

-¥ -¥

¥ ¥

-¥ -¥

= -

= -P

ò ò

ò ò
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This result together with the abovementioned Fréchet-Hoeffding inequality has the following 
consequence for the correlation coefficient. 
 
Theorem 3.4. Let ( , )U V  be a bivariate random vector with uniform marginal distributions. 

The corresponding correlation coefficient will be denoted by Cr  if the underlying copula is .C  

Then 
 

1. Cr  is always bounded by the correlation coefficients corresponding to the Fréchet-

Hoeffding bounds, Cr r r£ £  ; 

2. if 1C  and 2C  are copulas, then the relation 1 2C C  yields 
1 2

;C Cr r£  

3. each number in the interval [ , ]r r   is equal to Cr  for some copula .C  

 
The proof of this theorem relies on the observation that as in the example above, 
 

( )
1 1

0 0

Cov( , )
corr( , ) 12 ( , ) .

Var( ) Var( )

U V
r U V C u v uv du dv

U V
= = = ⋅ -ò ò  

 
Further, if we choose some a  from [0,1] and define a copula Ca  by  

 
: (1 )Ca a a= ⋅ + - ⋅�  , 

 
then the corresponding correlation coefficient Cr a

is (1 )r ra a⋅ + - ⋅  .  The so constructed 

one-parameter (mixture) family of copulas includes the Fréchet-Hoeffding lower and upper 
bound and allows for both negative and positive correlation. However, it is worth noticing 

that 
r

a
r r

=
-


 

 yields a zero correlation and a copula which does not correspond to the 

independence of U and V. Moreover, the independence copula can never be constructed using 
the above method.  
 
One of the consequences of Theorem 3.4 is that it is in general not possible to construct pairs 
of random variables ( , )X Y  with given marginals F and G and arbitrary correlation. In par-
ticular, if the variances of X and Y are finite, then a more general statement analogous to 
Theorem 3.2 is possible, i.e. minimal and maximal correlation are obtained for the general 
Fréchet-Hoeffding bounds. (This theorem is a central part in Hoeffding’s 1940 paper [12]; see 
also Embrechts et al. [8], Theorem 4.) Nice examples with applications in the finance world 
are e.g. given in Embrechts et al. [8], p. 206 ff., where also the role of correlation w.r.t. coher-
ent risk measures is discussed.  
 

Since Spearman’s rank correlation r is defined by 

 
( )( , ) corr ( ), ( )X Y F X G Yr r= =  

 
and ( ) and ( )F X G Y  are each uniformly distributed in case of continuity, we can easily ex-
tend Therem 3.4 to arbitrary random variables. 
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Corollary 3.5. Let ( , )X Y  be a bivariate random vector with arbitrary fixed continuous mar-
ginal distribution functions. The corresponding rank correlation coefficient will be denoted by 

Cr  if the underlying copula is .C  Then 

 
1. Cr  is always bounded by the rank correlation coefficients corresponding to the Fré-

chet-Hoeffding bounds, Cr r r£ £  ; 

2. if 1C  and 2C  are copulas, then the relation 1 2C C  yields 
1 2

;C Cr r£  

3. each number in the interval [ , ]r r   is equal to Cr  for some copula .C  

 
In fact, we can use the mixture copula : (1 )Ca a a= ⋅ + - ⋅�   from above to construct the 

pair ( , )X Y  via the (pseudo-)inverted c.d.f.’s 1F-  and 1G-  to achieve the rank correlation 

(1 )a r a r⋅ + - ⋅   for [ ]0,1 .a Î  

 

Likewise, Kendall’s t can in general be expressed solely through the underlying copula (cf. 

e.g. Embrechts et al. [8], p. 195f): 
 

1 1

0 0

( , ) 4 ( , ) ( , ) 1.X Y C u v dC u vt = -ò ò  

 
Similar measures of dependence have been proposed in the literature by Schweizer and Wolf 

[25]; they are all of the form ( ),Cd P  for some metric d on the space of (continuous) func-

tions over the unit square [ ]20,1  (see e.g. Embrechts et al. [8], p. 197 for details). 

 
 

4.   P a r a m e t r i c   f a m i l i e s   of   c o p u l a s 
 

Unfortunately it is seldom possible to calculate copulas explicitly from a given model of ran-
dom variables, such as in the introductory example. Two major problems occur frequently in 
this context: 
 
 The construction of the random variables involved is known and the joint distribution 

can be written down in closed form, but the copula cannot be described explicitly. 
 The copula and the marginal distributions are known, but there is no explicit (simple) 

probabilistic representation for the corresponding random variables. 
 

A typical example for the first situation is the Gauss-copula (also called F-copula), where the 

random vector ( )1, , nX X=X   has a multivariate normal distribution ( ),N Sμ  with mean 

vector μ  and variance-covariance matrix S. If S  is non-singular, then it is possible to repre-

sent X via a linear transformation using a random vector ( )1, , nY Y=Y   with distribution 

( ),N 0 I , i.e. all components iY  are independent and standard-normally distributed (here I = 

unit matrix). Since under the assumptions made, S  is positive-definite, there is a matrix A 

with the property trA AS = ⋅  (to be constructed from the diagonal matrix D of the (non-

negative) eigenvalues and the orthonormal matrix T of eigenvectors of S via 1/ 2A T= D ), so 
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that .= ⋅ +X A Y μ  Furthermore, there is a one-to-one correspondence between the pairwise 

correlations of the components iX  and S, given by ( )corr , ij
i j

ii jj

X X
s

s s
=  for the n n´ -

matrix .ijsé ùS = ê úë û  This emphasizes the fact that in the world of normal distributions, pairwise 

correlations determine the joint (normal) distribution uniquely, and that these correlations can 

be considered as natural parameters of the corresponding F-copula. For a somewhat more 

general discussion of such topics in the world of elliptical distributions, see e.g. Embrechts et 

al. [8], section 3.3. If we denote as usual by F the c.d.f. for the univariate standard normal 

distribution, then the corresponding (F-)copula CF  has the representation 

 
11

1 ( )( )

tr 1
1 1

1 1
( , , ) exp

2(2 ) det( )

nuu

n nn
C u u dv dv

p

-- FF
-

F

-¥ -¥

æ ö÷ç= - S ÷ç ÷çè øS
ò ò v v    

 
which cannot be simplified in a reasonable manner. On the other hand, note that for instance 
with the well-known Box-Muller-transform (cf. e.g. Robert and Casella [22], example 2.2.2), 
it is easy to generate the iY  above directly from uniformly distributed and independent r.v.’s 

iU  and iV  via ( ) ( )2ln cos 2i i iY U Vp= - . 

 
Hence if ( )1, , nZ Z=Z   is a random vector with components iZ  having an arbitrary c.d.f. iF  

each and a F-copula governing their mutual dependence, then Z can be represented as  

 

( ) ( )
1

2 ln cos 2 , 1, ,
n

i ij j j
j

Z a U V i np
=

æ ö÷ç ÷= F - =ç ÷ç ÷çè ø
å   with .ijA aé ù= ê úë û   

 
The generation of random variables with such a dependence structure is thus quite easy, al-

though the corresponding F-copula cannot be explicitly calculated. 

 
The same is true for the so-called Student- or t-copula, which for various reasons is of particu-
lar importance especially in the finance world (see e.g. Embrechts et al. [8] or Blum et al. [3]). 

It arises from the multivariate t-distribution with n degrees of freedom ( ),tn Sμ  and is given 

by 
 

11
1 ( )( )

2
tr 1

, 1 1

12
( , , ) 1

( ) det( )
2

n
nt ut u

t n n
n

n

C u u dv dv
nn

n

n

n

n npn

-- æ ö+ ÷ç- ÷ç ÷÷çè ø
-

-¥ -¥

æ ö+ ÷çG ÷ç ÷ç æ öè ø ÷ç= + S ÷ç ÷çæ ö è ø÷çG S÷ç ÷çè ø

ò ò v v  
 

 

where tn  denotes the c.d.f. of the univariate standard t-distribution with n degrees of freedom 

and S is a positive-definite and symmetric matrix. Note that here the corresponding variance-

covariance matrix is given by 
2

n
n

S
-

 for 3,n ³  and that the “limiting” copula for ,n  ¥  
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,tC ¥  is identical to .CF  The stochastic representation of ( ),tn Sμ -distributed random vectors 

X is equally simple as in the case of the F-copula and can be achieved by multiplication of the 

zero-mean part in the normal distribution with an independent real-valued random factor Wn  

which must be chosen such that 
2Wn

n
 is 2

nc -distributed. To be more precise, let Y be as above. 

Then W A= ⋅ ⋅ +X Y μ is the desired stochastic representation for the ( ),tn Sμ -distribution. 

Likewise, random vectors with arbitrary marginals and a t-copula governing their mutual de-
pendence can be constructed in a manner completely similar as above. 
 
On the other hand, looking at copulas directly might also be a reasonable approach, since the 
structure of dependence could be more clearly visible or modeled as in the cases above. Here 
we shall concentrate on the so-called Archimedian copulas (for the history of this naming, see 

e.g. Nelsen [17], p. 98). These copulas are characterized by their so-called generator j  
through the following equation (cf. Nelsen [17], chapter 4.6):  
 

1
1

1

( , , ) ( )
n

n i
i

C u u uj j-

=

æ ö÷ç= ÷ç ÷ç ÷è øå    for   [ ]1, , 0,1 .nu u Î  

 
The following result makes a more precise statement about the existence of such copulas (cf. 
Nelsen [17], Theorem 4.6.2 and Corollary 4.6.3). 
 

Theorem 4.1. Let j be a continuous strictly decreasing function on the interval ( ]0,1  such 

that (1) 0j =  and 
0

lim ( ) ,
z

zj


= ¥  and let 1j-  denote its inverse on the interval [ )0, .¥  If 

nC C=  is a function on the unit n-cube [0,1]n with 3,n ³  fulfilling the above additive rela-

tionship, then nC  is a copula for all 2n ³  if and only if 1j-  is completely monotonic, i.e.  

 

1( 1) ( ) 0
k

k
k

d
s

ds
j-- ³   for all  and  0.k sÎ >  

 
In this case, we have necessarily C P  (in the sense of Definition 3.2). 
 
In fact, for dimension 2,n =  the situation is a little simpler here since just convexity of j  is 
sufficient for C being a copula. Also, C P  is possible here. For details, see Theorem 4.1.4 
in Nelsen [17]. 
 
It is worth mentioning that by an old Theorem of Bernstein [2] and under the above side-
conditions, such functions can be represented as the Laplace transforms of non-negative ran-
dom variables Z via 
 

( )1( ) , 0,sZs E e sj- -= ³  

 
a fact that has also been paid attention to in the literature [see e.g. Nelsen [17], p. 65f, p. 106 
and p. 124, or the appendix in Joe [13]]. Indeed, such a representation gives, by the monotone 
convergence theorem, 
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( )1 1 1(0) 1, lim ( ) 0,  and ( 1) ( ) 0
k

k k sZ
ks

d
s s E Z e

ds
j j j- - - -

¥
= = - = ³  for all   and  0.k sÎ >  

 
The distribution of Z can also be interpreted as a mixing distribution for the parameter z in the 
family of exponential functions , 0, 0.sze s z- ³ >  In particular, if we choose 1,Z º  then 

1( ) , 0,ss e sj- -= ³  and the resulting copula is the independence copula P. If we choose Z to 

be ( , )a aG -distributed with 0,a >  i.e. Z  has a density Zf  of the form 

 
1

( ) , 0,
( )

z
Z

z
f z e z

a
a aa

a

-
-= >

G
 

 

then ( )1( ) , 0,sZs E e s
s

aa
j

a
- - æ ö÷ç= = ³÷ç ÷çè ø+

 hence ( )1/( ) 1 .t t aj a -= -  Replacing a by 1/ q  we 

obtain the so-called one-parameter family of Clayton copulas: 
 

( ]
1/

1,
1

( , , ) 1 , 0,1 , 0.
n

n

n i
i

C u u u n
q

q q
-

-

=

é ù
ê ú= - + Î >
ê úë û
å u  

 
Note that for 0,q   i.e. ,a  ¥  the mixing Gamma-distribution converges to the Dirac 
measure concentrated in the point 1, hence the independence copula is obtained as a limit 
copula here. For ,q  ¥  i.e. 0,a   the mixing Gamma-distribution converges to the Dirac 
measure concentrated in the point zero, which means that the corresponding limit copula is 
the upper Fréchet –Hoeffding bound . 

As can easily be seen, neither the F-copula nor the t-copula above are Archimedian except for 

the independence copula P included in these models as special cases. In practical applica-

tions, the following parametric Archimedian families Cq  of copulas have gained particular 

interest (cf. Nelsen [17], p. 94ff): 
 

name copula Cq  generator qj  mixing distribution1) 

Clayton  
1/

1

1 , 0
n

i
i

u n
q

q q
-

-

=

é ù
ê ú- + >
ê úë û
å  ( )1

1t q

q
- -  Gamma 

Gumbel  ( )
1/

1

exp ln( ) , 1.
n

i
i

u
q

q q
=

æ öì üï ï ÷ç ï ï ÷ç- - ³÷í ýç ÷ï ïç ÷ç ï ïî þè ø
å  ( ln )t q-  positive stable

 

Frank  ( )
1

1 1
ln 1 1 , 0

1

iun

i

e
e

e

q
q

q q
q

-
-

-
=

æ öì üï ï- ÷ç ï ï÷- + - >ç í ý÷ç ÷ï ïç -è øï ïî þ
  1

ln
1

te

e

q

q

-

-

-
-

-
 log series 

 
1) see Joe [13], p. 374f 

 
The Gumbel copula has for long played a central role in the area of statistics of extremes 
where it and others can also be motivated by appropriate limit theorems for joint extremes 
(see e.g. Reiss and Thomas [21] or Kotz and Nadarajah [15], chapter 3). While the Gumbel 
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copula has been used in particular in the analysis of natural catastrophes (see e.g. Pfeifer [18], 
[19]), the Clayton and Frank copulas have more recently attracted attention in the area of fi-
nance (cf. Blum et al. [3] and Junker and May [14]), but also in general insurance applications 
(cf. Frees and Valdez [10], Belguise and Levi [1] or Charpentier [4]). 
 
It should be mentioned that for 2,n =  the theory of Archimedian copulas is richer in the 
sense that less restrictions have to be imposed on the generator (see e.g. Nelsen [17], chapter 
4), so that “more” Archimedian copulas exist in two dimensions than in greater generality, 
especially some with .C P  However, according to the modern challenges in particular in 
IRM and DFA, copula models in higher dimensions become more and more important (see 
e.g. Pfeifer [19] for an insurance-linked example with eight dimensions). 
 
Concerning the remarks at the beginning of this chapter, we would like to add that the genera-
tion of random vectors from two-dimensional Archimedian copulas is quite easy and can be 
performed in the following way, as was shown by Genest and Mackay [11] (cf. also Nelsen 
[17], p. 108 or Mari and Kotz [16], section 4.10.2): Let U and V be independent uniformly 
distributed random variables; set  
 

( ) ( )1 1'( )
: ' , : ( ) ( ) .

U
S T S U

V

j
j j j j- -æ ö÷ç= = -÷ç ÷çè ø

 

 
Then ( , )S T  is the desired pair. This procedure works well for the Clayton and Frank family. 
For the Gumbel copula, see e.g. Reiss and Thomas [21], p. 241. 
Unfortunately, the generation of random vectors from (not only Archimedian) copulas in 
higher dimensions is not as simple and requires different techniques, cf. Embrechts et al. [8], 
chapter 6, or Robert and Casella [22] for MCMC-methods. 
 
Finally, we would like to mention that there are many possibilities to introduce sets of pa-
rameters into given families of copulas. Archimedian copulas can immediately be generalized 
to two-parameter families due to the fact that for appropriate Laplace transforms y  and 

,V ( )ln( )y V-  also is a Laplace transform (see Joe [13], p. 374ff). This fact can be used to 

construct such extensions, cf. also Nelsen [17], p. 123f. A nice survey for multivariate ex-
treme value distributions can be found in Kotz and Nadarajah [15]. Perhaps the simplest way 
to create multi-parameter copula families is by mixing, i.e. if 1, , mC C  are arbitrary (n-

dimensional) copulas and 1, , ma a  are non-negative weights with 
1

1,
m

k
k

a
=

=å  then 

1

m

k k
k

C Ca
=

= å  also is an (n-dimensional) copula. Another simple possibility to construct an n-

parametric copula 
1, , n

Cq q in 2n -dimensions is via products of one-parametric two-

dimensional copulas 
11, ,, ,

nnC Cq q  by 

 

1 1 2, , 1 2 1, 1 2 2, 3 4 , 2 1 2( , , ) ( , ) ( , ) ( , ).
n nn n n nC u u C u u C u u C u uq q q q q -= ⋅ ⋅ ⋅    

 
For the more general problem of creating higher dimensional copulas from lower dimensional 
ones, see e.g. Nelsen [17], chapter 3.4. However, the question arises here whether such ap-
proaches make reasonable sense for modeling real-world problems, where usually at least a 
minimum amount of information about the structure of mutual relationships is available. 
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5.   F u r t h e r   t o p i c s 
 
S u r v i v a l,   d u a l    a n d    c o – c o p u l a. Let U and V  be uniformly distributed random 
variables with a copula C. Then also 1 U-  and 1 V-  are uniformly distributed. We refer to 
 

{ } { }( )
{ } { }( ) [ ]

ˆ ( , ) : (1 , 1 ) ( 1 , 1 ) 1 1

1 1 1 1 (1 ,1 ), , 0,1

c c
C u v P U u V v P U u V v P U u V v

P U u V v u v C u v u v

= - £ - £ = ³ - ³ - = £ - Ç £ -

= - £ - È £ - = + - + - - Î
 

 
as the survival copula induced by C. (Corresponding generalizations to n dimensions are ob-
vious, involving Sylverster’s sieve theorem for the evaluation of probabilities for unions of 
intersecting events.) Note that this notion of a survival copula is different from the joint sur-
vival function C  of the original random variables, but there is of course the relationship 
 

[ ]

ˆ( , ) : ( , ) (1 1 , 1 1 ) (1 ,1 )

1 ( , ), , 0,1 .

C u v P U u V v P U u V v C u v

u v C u v u v

= > > = - £ - - £ - = - -

= - - + Î
 

 
From the above it is clear that the survival copula of a survival copula is identical with the 

original copula, i.e. 
ˆ̂

.C C=  The dual C  and the co-copula C*  of a bivariate copula C are 
defined as 
 

{ } { }( )
{ } { }( ) [ ]

( , ) : ( , )

( , ) : 1 (1 ,1 ) , , 0,1

C u v u v C u v P U u V v

C u v C u v P U u V v u v*

= + - = £ È £

= - - - = > È > Î


 

 
(cf. Nelsen [17], chapter 2.6). Note that these are not copulas in the strict sense of Definition 
2.1, but they can be helpful in calculating probabilities for events other than standard inter-
vals. Seemingly, extensions to more than two dimensions are likewise possible. 
 
It is interesting to notice that for Archimedian copulas, survival copulas can also be Archime-
dian, as is the case for the Gumbel copula. The generator for the Gumbel survival copula is 
given by ( ) ln(1 ln )t tqj q= -

 (cf. Nelsen [17], p. 94). 

 
C o p u l a s   a n d   t a i  l – d e p e n d e n c e. This topic is of importance for the analysis of 
joint extremes and is hence of relevance for insurance applications, in particular in connection 
with reinsurance.  
 
Definition 5.1. Let X and Y be random variables with c.d.f.’s F and G. The coefficient of (up-
per) tail dependence is in case of its existence given by 
 

( )1 1

0
: lim (1 ) (1 ) .P Y G X F

a
l a a- -


= > - > -  

 
For 0,l >  we say that Y is asymptotically dependent of X (in the upper tail); for 0,l =  we 
say that X and Y are asymptotically independent. 
 

In case of continuity of F and G, l can be expressed through the survival copula Ĉ  induced 

by X and Y as 
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( )
( )0 0 0

ˆ( ) 1 , ( ) 1 (1 ,1 ) ( , )
lim lim lim

( ) 1

P G Y F X C C

P F Xa a a

a a a a a a
l

a a a  

> - > - - -
= = =

> -
 

 
(see e.g. Embrechts et al. [8] and the discussion on further topics related to this). Some recent 
applications of this concept to insurance problems, in particular w.r.t. the Clayton survival 
copula (HRT-copula, “heavy right tail copula”), can be found in Belguise and Levi [1] and 
Charpentier [4]. Denoting by Cq  the original Clayton copula, we obtain for the HRT-copula 
ˆ ,Cq  after some simple analysis, 

 

1/

0 0

ˆ̂
( , ) ( , )

lim lim 2 for 0.
C C qq q

q a a

a a a a
l q

a a
-

 
= = = >  

 

Note that taking the limit 0q   (which corresponds to the independence copula P), we obtain 

0 0l =  here; likewise, 1.l¥ =  Thus for the HRT-copula, q  can be regarded as a “natural” 

dependence parameter. 
 
 
C o p u l a s   a n d   s t o c h a s t i c   p r o c e s s e s. It seems to be natural to apply the the-
ory of copulas not only to pairs or n-tuples of random variables as above, but rather to its infi-
nitely-dimensional analogue, stochastic processes. Some progress has been made in particular 
in the framework of the “simplest” of such dependence structures, Markov processes (see e.g. 
Nelsen [17], chapter 6.3). A nice exposition with applications to extreme value theory can be 
found in the recent Ph.-D. Thesis of Schmitz [23]. In actuarial science, the classical risk proc-
esses of the type 
 

( )

1

( ) , 0
N t

n
n

X t Y t
=

= ³å  

 
are of particular interest, where { }( ) | 0N t t ³  is a counting process (for the claims frequency 

in the time period [ ]0, t ) and { }|nY n Î  is a family of non-negative random variables (indi-

vidual claim sizes). Note that no independence assumptions are necessary to describe such a 
model, although this is usually the case in order to be able calculate certain event probabilities 
(in particular in connection with ruin). For practical purposes, it might be desirable to “cou-
ple” claim sizes and claims frequency together, which can of course be done via copulas. A 
more general approach to this kind of problems is through point process theory. In a recent 
paper of Pfeifer and Nešlehová [20], some ideas on how to couple risk processes of such type 
together (with “local” or “global” dependence) are outlined, with special emphasis on nega-
tive correlation for the frequency part (which is non-trivial). Such problems occur e.g. in 
modern DFA where time-dependence is an essential ingredient.  
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6.   C o n c l u s i o n   a n d   o u t l o o k 
 

Copulas have turned out to be a powerful tool in modeling stochastic dependencies in various 
fields related to insurance and finance. They are in particular useful for simulation studies 
within the framework of IRM and DFA, to mention some of the more recent applications. 
However, going into higher dimensions is still a challenge, since a lot of problems occuring 
there have not yet been sufficiently tackled. The most urgent task is perhaps to develop 
mathematical tools for a proper identification of suitable copulas in higher dimensions, and 
statistical tools for testing hypotheses on copulas or estimating their parameters. Some pro-
gress has been made for certain classes of copulas such as the Frank family (cf. Junker and 
May [14]), or the multivariate extreme value copulas (cf. Kotz and Naradajah [15]). The re-
cent paper by Deheuvels and Martynov [6] is very promising in this respect because the ap-
proach chosen there allows for the development of distribution-free goodness-of-fit tests for 
copulas in general. 
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S u m m a  r y 

 

This paper contains a survey over the mathematical foundations, properties and potential ap-
plications of copulas in insurance and finance. Special emphasis is put on relationships be-
tween copulas and correlation as well as dependence measures, parametric families of copu-
las, Archimedian copulas (in particular in higher dimensions), tail dependence and general 
stochastic processes. 

 

Z u s a m m e n f a s s u n g 

 

Diese Arbeit gibt eine Übersicht über die mathematischen Grundlagen, Eigenschaften und 
möglichen Anwendungsfelder von Copulas in der Finanz- und Versicherungswelt. Besonde-
res Gewicht liegt dabei auf dem Zusammenhang zwischen Copulas und der Korrelation bzw. 
allgemeineren stochastischen Abhängigkeitsmassen, parametrischen Familien von Copulas, 
Archimedischen Copulas (insbesondere in höheren Dimensionen), Tail-Abhängigkeit und 
dem Bezug zu stochastischen Prozessen.  
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