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1. Introduction

Reinsurance brokers and companies are frequently faced with the problem that claim size
data obtained for actuarial analysis are usually processed in grouped form, and mostly even
only available for the larger claim size layers. The statistical estimation of appropriate
claim size distributions for the total portfolio — say with the aim of forecasting probable
maximum losses as upper quantiles of that distribution ~ is then a difficult task which can-
not be performed with the usual elementary statistical tools, although some useful recom-
mendations can be found in the literature such as moment and modified maximum likeli-
hood methods (cf. e.g. [3], section 4.3.A), modified minimum-distance methods (cf. e.g.
[3], section 3.3 and section 4.3.A), linear regression methods in the particular case of Pareto
distributions (ct. [4], section 3.3.3(c)), or particular methods in the case of lognormal dis-
tributions (cf. [2], section 1.4.3). For a similar discussion with respect to extreme value dis-
tributions, see [1].

In this paper, we want to show that such an analysis can, however, be more simply per-
formed for most parametric classes of claim size distributions using certain non-linear
regression techniques for densities that are nowadays implemented in several statistical
software packages, such as STATISTICA. The powerfulness of this method will be dem-
onstrated using both artificial as well as real data from fire, windstorm and health care
losses.

2. The mathematical background

Throughout the paper we shall assume that the claim size distribution to be estimated is of
parametric form, with a density f(x; 6) being continuous on its support and a (possibly
multidimensional) parameter 8 € © where © denotes the underlying parameter set. Further
we assume that the data are grouped in a certain number m of pairwise disjoint layer inter-
vals L, =(a;, b;], i=1, ..., m; note, however, that we do not necessarily assume that these
intervals are adjacent. Let m;=(a;+b;)/2 denote the midpoint of each inverval, and k;
denote the number of claims falling in the layer band L;. By the mean value theorem of
classical analysis, we have

[ £(x:6)dx =(b; —a;) £(&;6) = (b; —a;) f(m;; 6)
L

where ¢ is a suitable intermediate point in L;. On the other hand, under the assumption of sto-
chastic independence of the data generating random variables, distributed as X, say, an applica-
tion of the law of large numbers shows

[ f(x;0)dx =P(XeL;)= 0
L n

1
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where P denotes the underlying probability measure and n is the total number of claims. We
thus obtain the simple approximation formula

k.
f(m; )= ———, i=1,...,m.
(m;: 6) n(b; —a;) =l m

If one defines — depending on the data given — a suitable loss function, e.g.

2
L(9)=(w(£—)—w(f(mi;9))j , 0€0,
nd;

1

with d;=b;—a;, and a suitable weight function w, a parameter estimation for 8 € ©® can be
performed using a non-linear regression technique using the loss function L. A great advan-
tage of this method over those outlined in the introduction is that we do not make any use
of the underlying cumulative distribution function, which is generally not expressible in
closed form, e.g. for lognormal or gamma distributions. For the problem under considera-
tion, w=1g (the logarithm with base 10) has turned out to be quite efficient, since this
enforces a more accurate approximation in particular in the tails of the distribution, which
is especially desirable from the viewpoint of reinsurance.

3. Some practical example

The following table contains the grouped data k; from 2000 simulations of LN (1, 0)-log-
normally distributed random variables with 4 =1 and 0'=2 in the column named KI, with a
total of m=12 layer bands. The column named KI_N_DI contains the transformed data
ki/ n/ di'

Table 1
NUMERIC
T el oE] L B Fg AR
ATl SO K1 KT WopT
0.0 1.0 .5 1.0 604 . 30200000604, 00000
1.0 5.0 3.0 4.0 637 ,07962500 159, 25000
5.0 10,0 7.5 5.0 260 ,0260000052, 000000
10,0 20.0 15,0 10,0 191 ,0095500019,100000
20,0 50.0 35,0 30.0 178 ,00296667 5,9333333
50.0 100.0 75.0 50.0 67 .00067000 1, 3400000
100.0 150, 0 125.,0 50.0 26 ., 00026000 ,52000000
150.0 200.0 175.0 50.0 14 00014000 .28000000
200.0 500.0 350,0 300,0 16 ,00002667 ,05333333
500.,0 750.0 625.0 250.0 4 ,00000800,01600000
750,0 1000.0 875.0 250.0 1,00000200,00400000
1000,0 4500,0 2750,0 3500.0 2.,00000029,00057143
2000

Using the module Nonlinear Estimation in STATISTICA with the above user-specified loss
function
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Figure 1

and the Hooke-Jeeves-pattern move procedure (which has turned out to be one of the most
stable numerical procedures for our problem, among the choices offered by STATISTICA)

E Model Estimation

Model is: ki n di=lognorm(mi;mu;sigma)
Number of parameters to be estimated: z
Loss function: (Logl0{0B3)-LoglO(PRED))**2
Dependent variable: KI_N_DI

Independent wariables: MI

Missing data are casewise deleted

Number of valid cases: 12

Figure 2

we obtain the following estimates for ¢ and o
2=0,9823075, & =2,009623
and the estimated density plot (in log-log-scale, cf. [2], p. 94, Fig. 1.4.3.6):
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Model: ki_n_di=lognorm(mi;mu;sigma)
y=lognorm(x;(0,9823075);(2,009623))
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Figure 3

Seemingly, the fit to the actual distribution is extremely good. The following graph shows
the fitting result when only the upper 7 layers are used (i.e. only 130 out of 2000 original
data!):
Mode!: ki_n_di=lognorm(mi;mu;sigma)
y=lognorm(x;(0,7611328);(2,1))
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with the estimates
a=0,7611328, 6=2,1

which are still reasonably close to the original parameters in spite of the fact that only 6,5%
of the available information was used.

The problem of distribution fitting becomes still a little bit more complicated if the total
number of claims is unknown, which is sometimes the case if only data for the upper layer
bands are available. In this situation, the number n of observations can formally be added
as another component to the parameter 6, i.e. the loss function will now be

2
L*(6, n) =(w[§—')—w(n-f(mi; 9))) , 0€0, nelN,
1

where w is again a suitable weight function. This approach avoids the otherwise necessary
consideration of conditional distributions, which would require an inclusion of the cumula-
tive distribution function in the loss function. For the full data set, a corresponding analysis
with w = Ig gives the following picture (note that column KI_DI in the table above con-
tains the ratios k;/d;):

Model: ki_di=n*lognorm(mi;mu;sigma)
y=(2269,1435)"lognorm(x;(0,791509);(2,05035))
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Figure 5

with still acceptable estimates
fi=2269, (A=0,791509, ¢6=2,05035.

Note, however, that the use of w = Ig sometimes does not produce stable results, if too little
of the layer bands are given and n is large. This is due to the fact that the products
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n - f(m;; 6) increase with n, so that the weight function w = lg will level out even signifi-
cant differences between the fit function and the data. E.g. in the example above, no rea-
sonable parameter estimates — especially for n — are obtained if more than the first layer
band is removed from the analysis. A general possibility of improvement here consists in a
different choice of the weight function w. Good results are usually obtained if the Ig-func-
tion is replaced by 4 . The following graph shows the corresponding results, where again
only the 7 upper layer bands were considered for the analysis.

Model: ki_di=n*lognorm(mi;mu;sigma)
y=(1791,33)*lognorm(x;(1,2548424);(1,8098537))
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Figure 6

The corresponding parameter estimates are here
fi=1791, [A=1,2548424, & =1,8998537

which still is a reasonably good result.

4. Worked examples from actuarial practice

In this section, we firstly want to present the outcome of an analysis of the above type for
an existing portfolio with fire and windstorm losses, resp., from the year 1997. The data
have been kindly provided by AON Re Jauch & Hiibener, Hamburg. According to actuarial
experience, the fire claim data are fitted by a lognormal, the windstorm data by a Fréchet
distribution with cumulative distribution function.

F(x)=e ™ x>0

500



with shape parameter & and scale parameter A (see e.g. [5] for the problem of distribution
fitting for windstorm losses).

Table 2
NUMERIC

YALUES - T
0.0 5.0 2.5 5.0 62005868434 12400000
5.0 10.0 7.5 5.0 440 .0416469588.000000
10.0 20,0 15.0 10,0 257 ,01216280 25. 700000
; 20,0 30.0 25.0 10,0 11000520587 11, 000000
30.0 50,0  40.0 20,0 150 .003549467.5000000
50.0 100.0, 75,0 50,0 148 ,001400852,9600000
100.0 500.0  300,0. 400.0 307 .00036323 76750000
500,0 1000,0 750,0  500,0 70 .00006626 .14000000
1000.0 2000,0 1500,0 1000.0 1100000521 01100000

211

fire claims in 1000 DEM, number of claims = 2113

Model: ki_n_di=lognorm(mi;mu;sigma)
y=lognorm(x;(2,6158155);(2,0393934))
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Figure 7

with estimates
A=2,6158155, 6 =2,0393934
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For the windstorm losses, we have the following data.

Table 3
NUMERIC
YALUES
0.0 1.0 .5 1.0 26781,26739232678, 0000
1.0 5.0 3.0 4,0 1210,14316138302,50000
5.0 10,0 7.5 5.0 57 ,00539517 11, 400000
10,0 20,00 15,0 10,0 19 ,000899201,9000000
20,0 50,00 35,0 30,0 11,00017353 36666667
50,0  100.0 75.0 50,0 1.,00000947 ,02000000
3976

windstorm losses in 1000 DEM, number of claims = 3976

Model: ki_n_di=alpha*A*(-alpha)*mi*(-alpha-1)*Exp(-(A*mi)*(-alpha))
y=1,200761152"exp(-0,7397868632*1/(x*1,6231177))/(x"2,6231177)
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estimated Fréchet density in log-log-scale, weight function w =Ig
&=1,6231177, A=0,8934019

100,0 1000,0

Figure 8

In both cases, the results seem to be quite satisfactory from the practical point of view.
The following investigation refers to the analysis performed in [1], concerning health care data,
which are given in the following table.
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Table 4

NUMERIC

YALUES - i
: s Rnmomeg KI_N DI RS e
0.0 5.0 .5 5.0 1835,17368670367,00000
5.0 10,0 7.5 5.0 1663 ,15740653332, 60000
10.0 20,0 15.0 10,0 1101 ,05210601110,10000
20,0 40.0 30.0 20,0 717 01696640 35,850000
40,0 60.0 50.0 20,0 252 ,0059630912,600000
60.0 80.0 70,0 20.0 103 .,002437295,1500000
80.0 100.0 S0.0 20.0 56 .001325132,8000000
100.0 150.0 125.0 50.0 42 ,00039754 ,84000000
150.0 200.0 175.0 50.0 14 ,00013251 28000000
200.0 300.0 250.0 100.0 13, 00006152 ,13000000

5796

health care claims in 1000 DEM, number of claims = 5796

In [1], the analysis was performed with the 8 upper layer bands, fitting a generalized Pareto
distribution with cumulative distribution function of the form
Fep(0=1-(1+&/By"%, x20

with shape parameter £ >0 and scale parameter 8> 0. Note that we have only changed the
endpoint of the last layer band from o to 300. The following graph shows the result of an
analysis with our method.

Mode!: ki_di=5796/beta/(1+xi*mi/beta)™(1+1/xi)
y=5796/(9,969185)/(1+(0,372664)*x/(9,969185))(1+1/(0,372664))
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1,0

0,1 .
10 100

Mi
estimated generalized Pareto density in log-log-scale, weight function w=4"

Figure 9
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The estimates here are
£=0,372664, [=9,969185
of which only the scale parameter estimate [3 differs essentially from the corresponding

estimate 3 = 17,5 in [1]. However, our estimates are in better coincidence with the data
given in table 4, as can be seen from the following table:

Table 5

NUMERIC
VALUES P e Sy
“KI NEW | KI OLD:
0.0 5.0 18352136,35461386,5239
5.0 10,0 16631187,8452976.08056
10.0 20,0 11011175.98681232.1678
20,0 40.0 717 797.487901137.9963
40.0 60,0 252 251,66485 469,85392
60,0 80,0 103105,29814228,67129
B0.0O 100,0 5652,194457 124 ,52167
100,0 150.0 4252,633740136,63812
150.0 200,0 1417,810559 49,700474
200.0 300.0 1311,69908033,.783316
I 5?96'5?88,9?53 5775.9433

Here the column KI_NEW contains the expected number of claims in the corresponding
layer band according to our estimates, while KI_OLD contains the expected number of
claims in the corresponding layer band according to the estimates in [1], obtained with the
)f—method (cf. also Abb. 2 in [1]). It is clearly seen that the deviation between actual claim
numbers and expected claim numbers is much less with our method than with the methods
in [1] which are based on the cumulative distribution function instead of the density, as in
our case. In particular, with the results in [1] the tail of the (fitted) distribution is obviously
overestimated, resulting in slightly too high premiums.

5. Final remarks

The density based method for fitting claim size distributions to grouped data presented in
this paper is not only fast but seemingly also produces good or even better results in com-
parison with other methods based on the cumulative distribution function. In particular, it
is possible to fit claim size distributions to incomplete data sets, either with given total
number of claims, or without (being probably less accurate then), which is of special
importance to all kind of reinsurance applications.
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Zusammenfassung

Eine einfache Methode zur Schitzung parametrischer Schadensverteilung aus gruppierten Daten

In der Riickversicherungspraxis wird man hiufig mit dem Problem gruppierter Daten konfrontiert,
die zudem meist auch unvollstindig — d.h. nur in hoheren Schadenbéndern - vorliegen. Standard-Ver-
fahren der mathematischen Statistik zur Schitzung der zugrundeliegenden Verteilung lassen sich
dann in der Regel nicht ohne weiteres anwenden. In diesem Aufsatz soll daher gezeigt werden, wie
unter Verwendung nicht-linearer Regressionsmethoden fiir Dichteschitzungen, die heutzutage in vie-
len Statistik-Software-Produkten vorhanden sind, eine solche Analyse doch relativ einfach durchge-
fiihrt werden kann. Die Stirken dieses Verfahrens werden sowohl anhand simulierter Daten als auch
anhand konkreter Schadenfalle aus der Feuer-, Sturm- und Krankenversicherung veranschaulicht.

Summary

A simple method to estimate parametric claim size distributions from grouped data

In the praxis of reinsurance the problem often occurs that claim size data are usually processed in
grouped torm, and mostly even only available for the larger claim size layers. The statistical estima-
tion of appropriate claim size distributions for the total portfolio is then a difficult task which cannot
be performed with the usual elementary statistical tools. In this paper, we want to show that such an
analysis can, however, be simply performed for most parametric classes of claim size distributions
using certain non-linear regression techniques for densities that are nowadays implemented in several
statistical software packages. The powerfulness of this method is demonstrated using both artificial as
well as real data from fire, windstorm and health care losses.
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