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Introduction 
 
One of the central problems in reinsurance during  the last two decades is probably the increasing 
number and severity of natural catastrophes which has independently been reported in numerous 
scientific investigations. The larger part of these is mostly due to meteorological events like 
windstorms, hailstorms, flooding or landslide; areas where in particular growing damage rates are 
observable. Although there seems to be no stringent proof yet for the thesis that these rates are 
basically due to a worldwide climatic change, there is however much evidence that the observed 
trends cannot be explained by economic factors like inflation, concentration of values or a 
growing insurance density alone. For a more detailed discussion of these points, see e.g. Berz 
(1999). The reinsurance industry  therefore has a vital interest in good physical or mathematical 
models which besides “static” information about model parameters also allow for a simulation of 
future loss scenarios by the use  of suitable computer programs. 
In this paper we want to show how scientific consulting in the reinsurance business can profit 
much from such methods, with a particular emphasis on the use of modern statistical tools. As an 
illustration, we consider insured losses caused by U.S. hurricanes which are sufficiently 
documented in public sources. 
 

Geophysical and meteorological models 
 

An important approach to the mathematical analysis of losses caused by climatic events is the 
modelling of the corresponding physical forces and their impact on the insurance industry. One 
of the first companies to develop such models was Applied Insurance Research (AIR) who have in 
particular concentrated on claims caused by hurricanes in the south-east of the U.S. For a survey, 
see e.g. K.M. Clark: Current and Potential Impact of Hurricane Variablility on the Insurance 
Industry, in: Diaz und Pulwarty (1997), 273 – 283; other aspects of such models, in particular 
w.r.t. earthquakes, are e.g. treated in Woo (1999). Besides a detailed study of relevant physival 
parameters such as air pressure, wind speed and direction, geographical locations of storm 
centers etc. the model also relies on a larga data base with informations on the location, type and 
content of insured buildings. With the aid of high-speed computers the model simulates storm 
events on the basis of weather records dating back until the early 1900’s; a typical study 
comprises about 1000 simulations which are considered to be representative for future 
occurrances of such events. By means of suitable mathematical functions the simulated 
meteorological and physical parameters are then linked to the possible damages at or in the 
buildings under consideration. This results in the generation of  loss potentials which are 
considered to be representative for today’s and future claim scenarios, and allow for an empirical 
estimate for some PML (Probable Maximum Loss), which statistically corresponds to a  
(in general high) quantile q of the overall loss distribution. If F(x) denotes the corresponding 
cumulative distribution function, i.e. the probability for the event that the total losses do not 
exceed the value x, then formally −= 1PML(q) F (q)  where −1F  denotes the mathematical inverse 
function. For practical purposes this quantile is usually also expressed in terms of the so-called 
return period T, which denotes the time interval within which on average one exceedance of the 
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PML is expected; i.e. we have =
−
1T

1 q
. Clark (1997) provides the following table for the overall 

loss potential due to hurricanes (insured claims, basis 1993) per one yearly hurricane event: 
 
 

Return period T (years) quantile q PML (in Mio. U.S. $) 
10 0,90 7800 
20 0,95 13200 
50 0,98 23600 

100 0,99 30700 
200 0,995 34500 
500 0,998 50900 

1000 0,999 51500 
 

Tab. 1: loss potential by U.S. hurricanes 
 

This table which is based on empirical values can also be read like this – from bottom to top: 
within 1000 simulated storm events (corresponding to 1000 years time horizon) there occurred 
precisely one claim of U.S.$ 51,5 Mio., precisely two claims of U.S.$ 50,9 Mio. and more, 
precisely 5 claims of U.S.$ 34,5 Mio. and more, etc. 
From the statistical point of view, however, the empirical PML’s particularly for large return 
periods (above 200 years) are critical, since they rely only on 5 simulated (observed) values. Also, 
the knowledge of only a few such PML estimations does not provide sufficient information 
about the underlying loss distribution as a whole, which however would be possible if all of the 
simulated values were taken into account. 
 

Mathematical and statistical models 
 

In contrast to the meteorological and geophysical models the statistical approach to the problem 
of forecasting potential future losses and PML’s is to analyze past or historic data. There is some 
criticism by the physical modellers and in part also by the insurance industry in particular w.r.t. 
PML estimates for return periods of 200 years and above since no or only sparse loss 
observations are available here. In principle, however,  this objection also applies to the physical 
models since they base on comparable historic storm events which are likewise extrapolated into 
the future. This problem is also discussed in Hipp (1999) and Pohlhausen (1999); Pohlhausen 
writes [conveying to the general sense]: “It is always a difficult task to derive forecasts for future 
developments out of the past. However, this is a meaningful enterprise. There is no other way to 
approach the uncertainty of the future.” 
Interestingly, due to the historical hurricane loss data set (1949 – 1992) published in Catastrophe 
Reinsurance Newsletter of 1993 ending with the 15 billion U.S.$ record loss caused by hurricane 
Andrew, it is in some sense possible to compare both approaches. Since the data are strongly 
affected by an exponential trend with a rate of about 10 % yearly average increase (as seen by 
some simple log-linear regression) the data have to be detrended and adjusted to the year 1993 
before they can be compared to the AIR study. The following graph shows the result of such a 
procedure. 
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Fig. 1: observed and detrended hurricane losses during 1949 - 1992 
 

Before a statistical analysis is to be performed with such data  it is worth while to think a moment 
about possible candidates for fitting distributional models. Since most commercial statistical 
software packages offer a great variety of alternatives here, one should take some theoretical 
results into account which have been derived for large claims, e.g. in the framework of statistics of 
extremes, a field that has fruitfully grown during the last 100 years. See e.g. Hipp (1999), Beirlant et 
al. (1996), Embrechts et al. (1997) or Reiss and Thomas (1997), who discuss actuarial applications 
of this theory in greater detail. One central theorem of this theory says that under quite general 
conditions the normalized extremes (maxima) of independent observations possess a limit 
distribution function F which must belong to one of the following three classes: 
 

distribution function  distribution class 
xeF(x)=e , x

−− ∈R  
 
Gumbel distribution 

xF(x)=e , x 0 ( 0)
α

α
−− > >  

 
Fréchet distribution 

( x)F(x)=e , x 0 ( 0)
α

α− − < >  
 
Weibull distribution 

 
Tab. 2: extreme value distributions 

 
Note that in the literature the Fréchet distribution is sometimes also denoted as inverse Weibull 
distribution, because the negatively inverse values of Weibull distributed random variables are 
Fréchet distributed. More recently a uniform parametrization of these classes has been developed 
where the Gumbel distribution is a limiting case between the Fréchet and the Weibull 
distribution; see e.g. Reiss and Thomas (1997), Chapter 1.3 (so-called γ -parametrization). For 
practical applications w.r.t. the fitting of loss distributions the Gumbel and the Weibull 
distributions are inappropriate, however, since they have mass in the negative real numbers. On 
the contrary, the remaining Fréchet distribution has turned out to be extremely efficient, in 
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particular when fitting losses from windstorm events; cf.  Pfeifer (1997) and Rootzén and Tajvidi 
(1997).  The following graph shows the result of  a simulation study for 44 claims from a Fréchet 
distribution fitted to the detrended hurricane data. 
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Fig. 2: simulated and observed hurricane losses (detrended) 

 
Seemingly there are no systematic differences between both time series visible, which is also  
confirmed by appropriate statistical tests. However, it makes sense to include also other 
distributional classes into the analysis, in particular those which exhibit a tail behaviour similar to 
that of the Fréchet or other extreme value distributions. Such classes include for instance the 
Pearson type V (inverse Gamma) or the loglogistic distribution, which are available in some 
professional fitting packages (see Law and Kelton (1991)). The following table contains the 
estimated parameters (scale and shape parameter) for some of these distribution classes, for the 
detrended hurricane data set. The ordering of the models is according to the goodness-of –fit, i.e. 
the Fréchet distribution provides the best result here. 
 

model Fréchet distribution Pearson Type V Loglogistic Lognormal 
scale parameter 506,8325 566,37823 802,31944 6,77273 
shape parameter 1,05681 1,09325 1,50267 1,17497 

 
Tab. 3: estimated parameters for hurricane data (detrended) 

 
The following graph shows the goodness-of-fit between empirical and theoretical distribution 
function.  
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Fig. 3: plot for visualization of goodness-of-fit  (detrended hurricane data) 
 

The above graph shows quite well that potentially all four distribution classes could be used for 
modelling the hurricane losses since all deviations remain between the critical lines (dashed). 
However, it is also seen that the Fréchet distribution shows the least oscillations here, hence 
provides the best fit according to this criterion. Another possibility to test the goodness-of-fit 
graphically is to use the so-called P-P-plot in which theoretical cumulative probabilities are 
plotted against the empirical ones.  
 

Range of sample 1 - Inverted Weibull (discrepancy=0,03991)
2 - Pearson Type 5 (discrepancy=0,04025) 4 - Log-Logistic (discrepancy=0,05745)
5 - Lognormal (discrepancy=0,06576)
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Fig. 4: P-P-plot for detrended hurricane data 
 

According to this criterion, the Fréchet distribution is again best-ranked here. For a very 
exhaustive discussion of such methods we refer to Beirlant et al. (1997).    
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Once an appropriate model fitting has been done it is possible to obtain corresponding PML 
estimates from that. In the case of a Fréchet distribution model, it is even possible to express the 
PML in terms of the return period T explicitly: 
 

1/
1/1PML(T) ln 1 T ,

T

α
ασ σ

−
⎧ ⎫⎛ ⎞= − −⎨ ⎬⎜ ⎟

⎝ ⎠⎩ ⎭
 

 
where σ  denotes the scale parameter, and α  denotes the shape parameter .The above 
approximation is sufficiently precise for return periods above 20 years already. For the four 
distribution classes, we obtain the following results. 
  

  distribution class                       PML  (Mio. U.S. $) 
return period T quantile q Fréchet Pearson Type V Loglogistic Lognormal AIR

10 0,90 4262 4201 3462 3938 7800
20 0,95 8422 8167 5692 6035 13200
50 0,98 20340 19244 10694 9757 23600

100 0,99 39381 36520 17076 13441 30700
200 0,995 76063 69088 27176 18020 34500
500 0,998 181276 160091 50105 25706 50900

1000 0,999 349459 302041 79525 32980 51500
 

Tab. 4: PML estimates after distributional fit, U.S. hurricanes 
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Fig. 5: PML estimates after distribution fitting, U.S. hurricanes (detrended) 
 

Seemingly there is a qualitatively good coincidence between the PML estimates of AIR and those 
from the Fréchet or Pearson type V model in the range of up to 100 years for the return period 
T. For larger values of T, however, there are substantial differences in the estimates; one possible 
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aspect is here that the PML estimates of AIR are for a single storm event per year only while the 
statistical analysis considers the aggregate claims over the whole year. This might explain for a 
PML estimate which is roughly twice as high in the Fréchet and Pearson type V model compared 
with the AIR value for a return period of 200 years since the average frequency of hurricanes is 
definitely more than one per year. 
 

Experiences and recommendations 
 
There is certainly no simple or even unique solution to the problem of estimating the “true” PML 
in practical situations. Depending on which reinsurance company or broker is concerned with 
this problem or how large the return period T under consideration is, there will most probably be 
a variety of different results, not only for the U.S. hurricane market; see also Pohlhausen (1999). 
However, experiences of more than five years of scientific consulting for a leading reinsurance 
broker have shown that in most cases PML estimates for catastrophic claims with return periods 
up to 200 years are still comparable, also under the different approaches outlined above. Perhaps 
the value of the PML alone is not even the most interesting information; the “dangerousness” of 
the loss distribution might count here as well. In the case of extreme value distributions and their 
relatives this aspect is usually described by the shape parameter α . For Fréchet distributions this 
relationship is immediately seen by the fact that the PML increases with the return period T like 

1/T α ; i.e. the closer α  is to the value 1, the more „linear“ is the increase of the PML with T. It 
should be kept in mind that for values of α  below 1 there does not even exist the mathematical 
expectation of the loss distribution, which means that theoretically the corresponding risk is not 
even “insurable”. By experience, most storm portfolios worldwide show up with α -values 
beween 1 and 1,5 indicating that the loss distribution is quite “dangerous” with a tendency to 
cyclic large loss potentials. Statistical extreme value theory here also provides tools for the 
estimation of such parameters; see e.g. the monograph by Reiss and Thomas (1997) which comes 
with a CD ROM containing a statistical software package called                      being developed at 
the University of  Siegen, Germany. 
 

Future developments 
 

So far  classical analyses of loss potentials with physical as well as statistical methods were mainly 
restricted to the one-dimensional case , with emphasis on PML estimates for individual risks with 
univariate loss distributions. In the future, however, multidimensional analyses will become of 
more importance, e.g. in connection with the rating of insurance bonds or, more generally, the 
so-called Alternative Risk Transfer (ART) which is concerned with the transfer of insurance risks 
to the capital market; see e.g. Hipp (1999). Although financial derivatives like CatXL or other 
catastrophe bonds do not yet play a major role in the reinsurance business one should be 
prepared to deal with the many possible dependence structures between the different risks 
involved. The approach via correlations which is quite popular in finance is, however, not 
appropriate here since due to the particular situation (extreme value distributions) statistical 
dependencies between risks cannot be modelled suffiently with such tools. A possible approch is 
here given by the so-called copula models which offer the possibility to describe the statistical 
dependence via backtransformation of the univariate observations by the inverse cumulative 
distribution function to (theoretically) uniformly distributed marginals; see e.g. Reiss and Thomas 
(1997), Chapter 8. Their software package                      also contains a module for  the analysis 
of different copula models which are particularly important in the range of extreme value 
distributions. Yet there is still demand for further scientific research in this area, especially w.r.t. 
the identification of suitable copula models for catastrophic risks. 
Other multivariate statistical tools which have turned out to be very efficient in practical 
applications are classical ordination principles like principal components analysis (PCA) or the more 
modern multidimensional scaling (MDS), which belong to the area of explorative data analysis. A central 
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idea of  MDS is to model the similarity of time series pertaining to claims caused by different 
risks and to map these for visualization purposes into the two or three-dimensional Euclidean 
space. This corresponds to a certain kind of complexity reduction; see e.g. Fahrmeir and Hamerle 
(1984) and enables the user to identify easily those risks which are similar in their loss potential 
either due to adjacent geographic locations or due to their dependence on similar climatic factors, 
or other effects. The following graph shows the result of a correponding analysis for risks like 
windstorm, hailstorm, flooding, landslide, avalanches and snow pressure, based on long-range 
times series of claims from Central Europe. 
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Fig. 6: example for a statistical analysis of claims with multidimensional scaling 
 

Note that the “dimensions” 1 and 2 do not have any direct physical interpretation here, however 
the physical distances between “points” represent the true similarity of loss potentials for the 
corresponding catatrophe types. It is interesting to notice that three disjoint groups of risks are 
obtained here (windstorm / flooding / landslide vs. avalanches / snow pressure vs. hailstorm). 
This can perhaps be explained by similar climatic triggers for such kind of risks and is in very 
good coincidence with investigations of various (re-)insurers. 
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