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Abstract: We present a statistical model based on record values of non–

i.i.d. observations to analyse and forecast claims arising out of natural

catastrophes, and/or to detect trends over time. In particular, claims

data from U.S. hurricanes and Japanese taifuns are discussed.

1. Introduction. It is a fairly evident fact that insurance claims due to the
occurence of natural catastrophes have raised enormously over the past decades
all over the world. Several arguments have been proposed in order to explain this
develoment, besides economic factors (inflation rate and increase in insured value)
mainly environmental influences (e.g. climatic change, cf. sigma 2/93). Although
it has become popular to develop physical models for the analysis and forcasting of
claims, in particular in the area of storm events, it seems that reliable conclusions
with respect to general premium calculation especially for reinsurance contracts
remain rather vague. On the other hand, mathematical modeling has already done
a good job in the statistical analysis of catastrophe claims (cf. R. Schnieper: The
insurance of catastrophe risks, C. Partrat and C. Huygues–Beaufond: Rate making
for natural events coverages in the USA, J.M. Cozzolino and E.M. Gaydos: Mea-
suring the probability of disastrous losses, in: SCOR Notes 1993, special issue on
”catastrophe risks”). In this paper, we want to present a particular approach to
the investigation of catastrophe claims in the presence of a trend, which is based
on a combination of parametric and semi–parametric methods from the area of
statistics of extremes. In a first step, the ”type” of trend will be analysed using
the number of record values in the times series of claims data, in the second step,
a maximum–likelihood estimation is performed with the data taking into account
what type of trend has been detected before. In order to check the validity of the
model assumptions, the estimates for the trend parameter obtained from the para-
metric as well as the semi–parametric approach can be compared. Tests for trends
based on the number of record values have been used earlier, see e.g. J. Diersen
and G. Trenkler (1996) and the references given therein; however, the proposed
combination of semi–parametric and parametric models seems to be novel, and has
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seemingly not yet been applied to insurance data before.

The method will be illustrated by two data records from catastrophe insurance
claims, namely U.S. hurricane events from 1949 to 1992 and Japanese taifun events
from 1977 to 1991.

2. Nevzorov’s record model. The semi–parametric part of the analysis relies on
a record model that has in more detail been studied by V.B. Nevzorov (see e.g. his
survey paper from 1988) and K. Borovkov and the author (1995). [It dates actually
back to a paper by M.C.K. Yang (1975) who studied the frequent breaking of
sports records in the light of a geometric growth of the world population.] In order
to avoid too much technical difficulties, we suppose that the catastrophe claims
considered here are realizations of an independent sequence {Xn}n∈N of non–
negative random variables with support R+ = [0,∞) and continuous cumulative
distribution functions {Fn}n∈N such that Fn = F γn with γn > 0, where F is a
fixed cumulative distribution function with F (0) = 0. Define record indicators by

I1 = 1, In =
{
1, if Xn > max{X1, . . . , Xn−1}
0, otherwise

for n > 1,

i.e. In = 1 iff observation Xn is a record value in the sequence. Under the above
assumptions, the record indicators are independent random variables with

P (In = 1) =
γn

γ1 + . . . + γn
, n ∈ N.

In the standard case of an i.i.d. sequence , this reduces to a well–known result
which was independently discovered by Dwass and Rényi:

P (In = 1) =
1
n

, n ∈ N.

For a statistical analysis of claims data, it is useful to consider the number of record
values in a finite number of observations, i.e. we consider

Sn =
n∑

i=1

Ii, n ∈ N.

From what has been said above it is clear that we have

E(Sn) =
n∑

i=1

pi, V ar(Sn) =
n∑

i=1

pi(1− pi), n ∈ N.

In the i.i.d. situation, this reduces to

E(Sn) =
n∑

i=1

1
i
≈ lnn, V ar(Sn) =

n∑
i=1

i − 1
i2

≈ lnn − π2

6
, n ∈ N.
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For our purposes, we shall particularly consider the choice γi = γi−1 with a fixed
(but possibly unknown) parameter γ ≥ 1 (called trend parameter). Note that for
γ = 1, we have the i.i.d. situation (no trend), while for γ > 1, the random variables
{Xn}n∈N are stochastically increasing (positive trend). In the latter case, we have
asymptotically

pi = pi(γ) =
γ − 1

γ
(1− γ−i)−1 ≈ γ − 1

γ

for large i, hence

E(Sn) ≈ γ − 1
γ

n

for large n.
Associated with I1, . . . , In and Sn are the so–called record times T1, . . . , TSn

which
denote the observation times at which record values occur:

T1 := 1, Tk+1 := min
{
i ≤ n | Xi > XTk

}
= min

{
Tk < i ≤ n | Ii = 1}, k < Sn,

with the evident property that ITk
= 1 for all k = 1, 2, . . . , Sn.

Note that the exponential parameter case does not necessarily anticipate the
type of trend in the data. For instance, if F (x) ∼ e−e−Ax

for x → ∞ (Gum-
bel distribution type, A > 0), then F γi−1

(x) ∼ exp
(−e−Ax+(i−1) ln γ

)
which

corresponds asymptotically to a linear trend in the mean, while if we have the
relation F (x) ∼ e−(Ax)−α

(Fréchet or Pareto distribution type, A > 0) then
F γi−1

(x) ∼ exp
(
−{Aγ(1−i)/αx

}−α
)
which corresponds asymptotically to an ex-

ponential trend in the mean indeed if α > 1. Actually, by a suitable form of the
cumulative distribution function F it is possible to obtain more or less arbitrary
types of trend in the mean for the cases considered here.
From the above calculation it follows that given the observations I1, . . . , In of record
indicators in a sequence of n data, the log–likelihood function L(γ) for γ ≥ 1 is
given by

L(γ) = ln

(
n∏

i=1

pi(γ)Ii(1− pi(γ))(1−Ii)

)

= Sn ln(γ − 1)− ln
(
γn − 1

)− Sn∑
k=2

ln
(
1− γ1−Tk

)
with derivative

L′(γ) =
Sn

γ − 1
− nγn−1

γn − 1
− 1

γ

Sn∑
k=2

Tk − 1
γTk−1 − 1

, γ > 1.

Unfortunately, it is in general not possible to solve L′(γ) = 0 explicitly to find
the ML–estimator γ̂ = γ̂(I1, . . . , In) except for the trivial cases n ∈ {1, 2}. For the
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explicit analysis of the data sets, the symbolic computer algebra system MAPLE c©
was used therefore.

3. The parametric statistical model. Since by economic arguments [e.g.,
inflation as one possible factor] it is reasonable to assume that a possible trend in
the data is of exponential type and that natural catrastrophe claims are frequently
the largest claims occuring over the year, we shall base the parametric statistical
model on a combination of Nevzorov’s record model and the parametric class of
Fréchet distributions [one of the three extreme–value distribution classes], i.e. we
shall assume that the cumulative distribution functions Fi for the yearly claims
are of the form

Fi(x) = exp
(−γi−1(Ax)−α

)
, A, α > 0, γ ≥ 1.

Note that among the possible extreme value distributions, the Fréchet distribution
family is the only one with a finite left endpoint, and that an arbitrary cumulative
distribution function F is in the domain of attraction of the Fréchet distribution
[i.e. the properly normalized maxima of independent observations generated by F

converge in distribution to a Fréchet limit, see e.g. Leadbetter et al. (1983)] iff F

has infinite right endpoint and

lim
t→∞

1− F (tx)
1− F (t)

= x−α, for all x > 0,

i.e. iff the tail 1 − F is regularly varying of index −α (see e.g. Bingham et al.
(1987)).

In order to avoid economically meaningless parameter constellations we restrict
our considerations only to a scale family with scale parameter A > 0 rather than
to a combined scale and location family.

For the above parametric family, the log–likelihood function LD(A, α, γ) for the
observed data set X1, . . . , Xn is given by

LD(A, α, γ) =
n(n − 1)

2
ln γ − (α + 1)

n∑
i=1

lnXi −
n∑

i=1

γi−1(AXi)−α + n ln
(
αA−α

)

for A, α > 0, γ ≥ 1. Since in general this function cannot be maximized by ele-
mentary calculations, a particular stochastic search procedure was performed for
the explicit data analysis.
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4. Data sets and data analysis. The following data sets were analysed by the
methods outlined above:

Yearly claims in Million U.S. $ from U.S. hurricane events from 1949 to 1992 (re-
cord values shown in boldface; source: Catastrophe Reinsurance Newsletter,
April 1993)

year 49 50 51 52 53 54 55 56 57 58 59

claims 8.3 174 7.7 7.3 14.3 136 25.2 20 32 5 13.1

year 60 61 62 63 64 65 66 67 68 69 70

claims 91 100 81 11 67.2 515 57 41.5 36.1 165.3 309.9

year 71 72 73 74 75 76 77 78 79 80 81

claims 31.6 100 76.6 454.4 119.2 34.5 42.6 79 752.5 100 201.6

year 82 83 84 85 86 87 88 89 90 91 92

claims 220 880 276.7 543 82 150 130 4195 625.6 1700 15500

Tab. 1: U.S. data

Fig. 1: U.S. data in logarithmic scale
linear fit with least squares
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Yearly claims in 1000 JYen from Japanese taifun events from 1977 to 1991 (record
values shown in boldface; source: personal communication)

year 77 78 79 80 81

claims 298.112 448.981 4090.363 1032.387 10642.608

year 82 83 84 85 86

claims 27940.639 7875.241 6680.829 37127.459 16498.341

year 87 88 89 90 91

claims 17107.156 2810.834 14281.424 39013.490 484332.000

Tab. 2: Japan data

Fig. 2: Japan data in logarithmic scale
linear fit with least squares

The graphical data displays in logarithmic scale reflect quite well from another
point of view that the assumption of an exponential trend in the data is reasona-
ble. The following table gives the estimated trend parameters γ̂ from the three ap-
proaches semi–parametric (s.–par.) [via record values], joint maximum–likelihood

(jML), and least squares (l.–sq.) [from the graphical analysis; here γ̂ = eα̂m̂ where
m̂ is the estimated slope for the regression line and α̂ an estimate of α, e.g. via
jML].

U.S. data Japan data

Method s.–par. jML l.–sq.

γ̂ 1.14 1.10 1.11

Method s.–par. jML l.–sq.

γ̂ 1.81 1.30 1.34

Tab. 3
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While for the U.S. data, all approaches give nearly the same estimate for γ, the
situation is not so clear for the Japan data. The following figures show the log–
likelihood functions in the semi–parametric setting as well as the graphs of the
number Sn (+) of record values up to observation no. n and record times (•).

Fig. 3: graph of L(γ)

Fig. 4

solid line: E(Sn)

dashed lines: E(Sn)± σ(Sn) ≈ γ − 1
γ

n ± 1
γ

√
(γ − 1)n
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Fig. 5: graph of L(γ)

Fig. 6

solid line: E(Sn)

dashed lines: E(Sn)± σ(Sn) ≈ γ − 1
γ

n ± 1
γ

√
(γ − 1)n

dotted line: E(Sn) + 2σ(Sn)

The last figure shows that the jML estimate γ̂ = 1.3 for the Japan data is still
acceptable within our statistical framework.

The following figures show graphs of simulated data from Fréchet type trend models
with the jML estimes γ̂ from Table 3, together with the corresponding original data
sets. Note that the corresponding jML estimates for the scale parameter α for the
Fréchet claim distributions are given by α̂ = 1.06 for the U.S. data and α̂ = 0.9 for
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the Japan data, indicating that the trend–corrected claims data are coming from
”dangerous” distributions (Fréchet distributions with α ≤ 1 do not possess a finite
expectation, for α ≤ 2 no variance exists).

Fig. 7: U.S. data

Fig. 8: Japan data

It is interesting to see that in the simulated data the next ”big” catastrophe (due
to the occurence of record values) is predicted for the year 2003 in the U.S. case
[comparable in size to the damage caused by hurricane Andrew in 1992] and for
the year 1998 in the Japan case.

We should like to point out here that a similar analysis of the U.S.hurricane data
for only the first 22 years from 1949 to 1970 results in practically the same para-
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meter estimates for γ and α as those given in Table 3. This means that under

the assumptions of model validity, a catastrophe like the one due to hurri-

cane Andrew could have been forcasted for the years between 1987 and 2003

already in the year 1970!

In order to test the goodness–of–fit for the Fréchet trend model, the data [original
and simulated] were detrended and transformed with the inverse (estimated) cumu-
lative distribution function, to give approximately uniformly distributed data in the
case of model validity. The tests were performed with the STATSTICA c© module
Nonparametric Statistics. Note, however, that due to the estimation procedure
before transformation of the data the rejection levels for the Kolmogorov–Smirnov
test as well as the χ2–goodness–of–fit test are lower than in the standard case.

Fig. 9: Q–Q–plot for transformed data

Fig. 10: U.S. data, original
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Fig. 10: Q-Q–plot for transformed data

Fig. 11: U.S. data, simulation

Fig. 12: Q-Q–plot for transformed data
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Fig. 13: Japan data, original

Fig. 14: Q–Q–plot for transformed data

Fig. 15: Japan data, simulation
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5. Conclusions. For the storm events analysed here it turns out that in the
past a yearly increase in claimsize expectation of about

(
γ1/α − 1

) × 100 = 9.4%
can be stated quite definitely for the U.S., whereas for Japan, a yearly increase
in the claimsize median [the expectation does not exist for α = 0.9] of about(
γ1/α − 1

)
= 33.2% can be cautiously assumed [based on the jML estimate for

γ]. It is of course questionable to what extend these rates of increase are due to
inflation and other economic influences, however the calculated magnitude is large
enough to admit that besides these factors also climatic change could perhaps play
an important role here.

The foregoing analysis suggests that it might be promising to apply the combi-
ned parametric and semi–parametric method outlined above also to more general
catastrophe claims data.
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