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Abstraet 

In this paper we present a general probabilistic representation theorem fo!" 

semigroups of .. 'perators which essentially comprises almost all known representation 

theorems of this kind. Especially, so-called first and second main theorems turn 

out to be special cases of the same general formula. The general theorem also per­

mits the calculation of rates of convergence involving the second modulus of cont­

inuity. 

,. In trod uction 

It is the purpose of this paper to present a general probabilistic representation 

theorem for semigroups of operators which extends a similar theorem due to Chung 

([4J, Theorem 5). We will show that almost all known representation formulas 

for operator semigroups are essentially obtained from this by specialisation; aLso" 
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so-called first and second main theorems turn out to be special cases of the same 

general fOl'mula. Some of the idea') used in the proof are implicit in the work of 

Chung [4J and Butzer and Hahn [3J, hence it will also be possible to calculate 

rates of convergence from the general theorem involving the second modulus of 

'Continuity. 

In the sequel we will extensively make use of probability theory in Banach 

'spaces. For a nice survey of the field we refer to the introducing chapters of B­

harucha-Reid's book [1J. 

2. Notations and preliminaries 

We con<;ider a strongly continuous one-parameter semigroup of bounded linear 

operators .:T = {T(t); t~O} with valuec; in a Banach space f!£ (see Butzer and Be­

rens [2J for definitions) endowed with the Borel a-field .!JlJ (i. e. the a-field gen­

erated by the norm-topology of f!£). In this case, .:T is a commutative Banach 

algebra where the composition of mappings plays the role of the product, and e­

very T(t) E .:T is both strongly and weakly measurable and separably valued (cf. 

also Butzer and Hahn [3J). For a (possibly .:T -valued) random variable (1'. v.) X 

E(X) will denote the expectation (which possibly is a Bochner- or pettis-integral); 

P w ill denote the underlying prob::t bility measure. 

3. The Representation Theorem 

We begin with a version of the Fubini theorem for Banach algebras: 

Lemma Let.<;p denote an arbitrary (not necessarily commutative) Banach 

algebra with product 0. Let further denote .!JlJ (!R) the Borel a-field over the real 

numbers !R, and let JJ, and v be a-finite Borel-measures on .!JlJ (!R). Then for 

all separably valued Botel-measurable mappings f, g from !R into .<;P such that f 
is JJ,-integrable and g is v-integrable the (measurable) mapping h defined by" 

h(s, t) = f(s) og(t), s, t E IR is JJ,Q9v-integrable (where JJ,Q9v denotes the pro­

.duct measure), and 

(1) 

Proof. This follows immediately from a simple extension of Mikusinski's 

([5J) Theorem 6.4 to the case of arbitrary a-finite Borel-measures; alternatively, 

use Bharucha-Reidfs ([ 1J) Theorem 1. 11 or proceed by algebraic induction proving 

the Lemma for simple functions first. 
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Corollary 1. Let X and y be independent real r. v. 's and j, g as in the 

Lemma such that reX) and gel') are integrable. Then 

ELf (X) 0 g(y) J = B[f (X) J cE[g(Y) J. (2) 

~,rO\V we ate able to formulate the general representation theorem: 

Theorem. Let N be a non-negative integer-valued r. v. and X be a non-

eegative real r. v. such that the characteristic functions ~J\ and ~x of N and X 

[-esp. (i. e., the Fourier translorms of their distributions) are analytic in some 

neighbourhood of the origin. Let further 1/!;v denote the moment-genenting function 

or N. Then for sufficientiy iarEe n, 'l/!l\(B[ T(~)J) i.s a bounded Linear operator, 

<'.riel with ~ = E(N)B(X), vv'e have 

(3) 

where the limit is to be understood in the strong operator topology. 

-Proof. we will first prove the Theorem for N= 1; then we have to show 

(4) 

Let {Xr.; n E IN} be independent copies of X. It is known that there exist cons­

tants lVI, w>o such that 

I!T(t)II~Memt, t~O (see [2J). 

hence for every r~ 1 and sufficiently large n, 

(5 ) 

which also indicates that E [ T ( ~ ~Xk)] is bounded for large n; likewise for 

Since l.. i:Xk-'; almost surely by the law of Large numbers (LLN), Lemma 1 of 
n k ~ 1 

Chung ([4J) is applicable giving 

T(t;) = limE[ T (~±x.)] = limB[ liT (~)] 
n _00 n k = 1 n _00 k _ 1 n 

(6) 
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by (2) and the semigroup-property of the commutative Banach algebra .:r. 
N 

Now for the general case, let y= ~Xk where {Xn;nEN} again are independent 
1;-1 

copies of X, independent of N. Since 'I/lN==€PN (-i log (.» and €Py=='I/lN(€PX)' €py is 

analytic in some neighbourhood of the origin. Another application of the Fubini 

theorem for Banach algebras gives 

N = m 

E[T(Y)]= E[n T(~)]= ~E[n T(~)]p(N=m) 
,n .-1 n m-O .-1 n 

= ~{E[ ~(~)Jrp(N=m)=='I/lN(E[ T(~)]) (7) 

for sufficien tly large n, where {E [ T ( ~) Jf = I (the identity opera tor); hence 

(3) follows from (6), replacing X by Y (note that E(Y) = E(N)E(X». 
Corollary 2 Let N be as in the Theorem with E(N) =~. Then 

(8) 

= 
where R(A) = Je-A1T(t)dt, A>O denotes the resolvent of the semigroup (see [2J). 

o 

Proof. Let simply X=l in (3); for the other part, let X have an exponen-

tial distribution with unit mean, then clearly E[ T (~) ] == n R(n). 

As can be seen by Corollary 2, first main theorems (i. e. theorems involving 

T(~)) and second main theorems (i. e. theorems involving R(n» are both ob­

tained from the general theorem by specialisation of the distribution of X, 

By further specialisation of the distributions of N and X we reobtain the 

following well-known representation formulas: 

A) If N has a Poisson distribution with mean ~, then 'I/lN(t) == e-1:etl:, hence 

(Hille) 

T(~) = lim{1/IN(nR(n»}" == lim exp( - ~nI + ~n2R(n» 

(Phillips) 

B) If N has a binomial distribution over {O,l} with mean ~, then 1/IN(t) = 1 
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(Kendall) 

T(';) = lim { 1/J N(nR(n»}" = limU - ';f!- ';nR(n»" 

(Chung) 
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C) If N has a geometric distribution with mean';, then 1/JN(t) = (1 +.;- ';t)-I, 

hence 

(Shaw [6J, (30» 

T(';) = lim{ 1/JN(nR(n» }n = limU + £f-- ';nR(n» - n 
n_oo n_oo 

(Chung) 

D) If N=l, X =.;y where y is geometrically distributed with mean 1, then 

(Shaw [6J, (40» 

E) If N=l and X has an exponential distribution with mean .;, then 

(Post-widder) 

F) If N=l and X has a gamma-distribution with density 

This is unother form of Theorem 4 b) in Butzer and Hahn [3J. 

There is of course a very much larger variety of representation theorems which 

-can immediately be deduced from the general theorem; also, uniform convergence 

statements and rates of convergence can easily be derived in the general case since 

the validity of (3) is essentially due to the LLN which is also basic for the work 

of Butzer and Hahn [3J. For example, if N=1 and X is uniformly distributed over 

(0,2';), 
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2 S ! n 

H) T(S)=lim{E[T(X)J~}n =1im{~- r T(t)dt}n 
n _00 , n n _0..-' 2~ J 

o 

with 

where K is a positive constant and (1)2 denotes the second modulus of continuity 

(d. Butzer and Hahn [3J. Theorem 1). 
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