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1. Introduction.

Let X1, . . . , Xn be a sample of random variables with a hypothetical contin-
uous distribution function F = F (n) (depending in general case on n, so that we
are in the triangular array scheme setup), X(1) ≤ X(2) ≤ . . . ≤ X(n) be the order
statistics of the sample. Last decade a lot of papers were devoted to the study of
various versions of L-statistics

(1.1)
n∑
j=1

vjX(j), vj = v
(n)
j , j = 1, . . . n,

n∑
j=1

vj = 1,

having the property that, for any ε > 0,∑
|j/n−t|>ε

|vj | → 0 as n→∞

for some fixed t ∈ (0, 1). Such statistics are intended for estimating the value of
the quantile function

(1.2) Q(t) = Q(n)(t) = F−1(t) := sup{x : F (x) ≤ t}, 0 ≤ t ≤ 1,
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at this point t, and in regular case they turn to be superior to the sample quantiles,
i.e. the values of the empirical quantile function (e.q.f.)

Qn(t) = F−1
n (t) = X(j) for

j − 1
n
≤ t < j

n
, j = 1, . . . , n,

Fn being the empirical distribution function (e.d.f.) of the sample X1, . . . , Xn.
This observation was supported by both experimental data (see e.g. discussions
and simulation data in Kaigh and Cheng [16], Kaigh and Driscoll [17], Sheater and
Marron [24], Steinberg and Davis [27], Stewart [28], and Yang [30]) and theoretical
considerations for the case of independent identically distributed (i.i.d.) X’s (here
one could mention in addition the works by Azzalini [1], Driscoll and Kaigh [6],
Kaigh [15], Falk [7 – 10], Padgett [20], Parzen [21], Reiss [22], and Zelterman
[31]). The first result to be cited here states that in the i.i.d. case the relative
deficiency of the sample quantile w.r.t. the linear combination of finitely many
order statistics goes to infinity (rather quickly) as the sample size n→∞ (Reiss
[22]).

Now note that statistic (1.1) may be viewed (for a special choice of vj ≥ 0)
as a result of averaging the sample quantiles for a ‘subsampling’ procedure. Thus,
sampling without replacement leads to the ‘O-statistic’

n+r−d∑
j=r

(
j−1
r−1

)(
n−j
d−r
)(

n
d

) X(j);

we draw a subsample of size d from the original sample X1, . . . , Xn, and take the
rth order statistic, r < d, with r/d ∼ t (Kaigh – Lachenbruch, or K-L-statistic;
sampling with replacement gives another version called Harrel – Davis, or H-D-
statistic). These statistics were shown to be asymptotically normal and further
asymptotically equivalent to each other and to the kernel type quantile estimator
(1.6) with the normal ‘window’ function k and ‘bandwidth’

(1.3) αn(t) = n−1/2
(
t(1− t)

)1/2
(Zelterman [31]).

Another asymptotically equivalent estimator (which is close to the ‘continu-
ous’ version of resampling without replacement) is given by the binomial weights:

(1.4) Q̃n(t) =
n−1∑
j=0

(
n− 1
j

)
tj(1− t)n−1−jX(j+1)

(cf. e.g. Muñoz-Pérez and Fernández Palaćın [19]). Clearly Q̃n(t) is the Bernstein
polynomial of order n − 1 for the sample quantile function Qn(t). It follows
from the well-known properties of Bernstein polynomials and continuity theorems
for empirical processes that if Q(n) converges to a continuous limit Q, then so
does Qn, and hence Q̃n also converges uniformly to Q. The Moivre – Laplace
theorem implies that in the i.i.d. case (1.4) is asymptotically equivalent to the
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kernel estimator (1.6) with the standard normal density k and time dependent
bandwidth (1.3). The special case of (1.4) for t = 1/2 was studied (under the
name of ‘Islamic mean’) in Dehling et al. [5]. It was shown in particular that the
deviation of this version of the ‘smoothed’ sample median from the usual one has
the following limit behavior: if F (t) = t, 0 ≤ t ≤ 1, then the law

(1.5) L
(
n3/4(Q̃n(1/2)−Qn(1/2))

)
⇒ N(0, σ2),

the normal distribution with mean 0 and variance σ2 = (21/2−1)/2π1/2 (the sign
⇒ denotes here and in what follows the weak convergence of the corresponding
laws).

See also Falk [11, 12] and Falk and Reiss [13, 14] for relevant problems for
bootstrap quantile estimators.

Another special class of statistics of the form (1.1) admitting representation
in the kernel estimator form

(1.6) Q̂n(t) =
1
αn

1∫
0

Qn(x) k
(
t− x
αn

)
dx

(with a fixed kernel k for all n with some bandwidth parameter αn → 0 as
n → ∞) was extensively studied in the literature of nonparametric estimation
(see e.g. Azzalini [1], Falk [8, 9], Padgett [20], Parzen [21], Sheater and Marron
[24], Yang [30], Zelterman [31]). We state here the main result of Falk [8] giving
the asymptotic behavior of the relative deficiency

(1.7) d(n) = min
{
j : E

(
Qn+j(t)−Q(t)

)2 ≤ E
(
Q̂n(t)−Q(t)

)2}
of the sample quantile Qn(t) w.r.t. the estimator (1.6) when X’s are i.i.d. and
F = F (n) does not depend on n.

Let limt→∞ tδ(1 − F (t) + F (t)) = 0 for some δ > 0, Q(t) be (m + 1) times
differentiable in a neighbourhood A of t ∈ (0, 1), m ≥ 2, and the derivative of
order (m+1) be bounded in A, Q′(t) > 0. Suppose that the kernel k has bounded
support [−c, c], and that∫

k(x) dx = 1,
∫
xjk(x) dx = 0, j = 1, . . . ,m.

If

(1.8) αnn
1/4 →∞ and αnn

1/(2m+1) → 0 as n→∞,

then

(1.9) lim
n→∞

d(n)
nαn

=
Ψ(k)
t(1− t)

,
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where

(1.10) Ψ(k) = 2
∫
x k(x)K(x) dx, K(x) =

x∫
−c

k(y) dy.

The functional Ψ, which can be interpreted as a measure of performance of
the estimator (1.6) was studied in Falk [7, 8].

In the present paper we study more general L-statistics of the form (1.1) and
prove for them a result of the type stated in (1.5) for the deviation of our statistics
from sample quantiles. Further we evaluate the asymptotics of the covariance of
such a deviation with the sample quantile itself. This gives us the asymptotics of
the relative deficiency of the latter w.r.t. statistic (1.1) (without restrictions of
the type (1.8)).

2. Main results and proofs.

Let {V (n)
t }0≤t≤1, n = 1, 2, . . ., be a sequence of families of distributions on R.

In what follows, we assume that the following uniform ‘unbiasedness’ condition is
satisfied:

(2.1)

1∫
0

xV
(n)
t (dx) = t+ δ

(n)
t , δ(n) = sup

t
|δ(n)
t | → 0 as n→∞.

We suppose also that the measures W (n)
t (A) = V

(n)
t (t+αnA) converge weakly

for a sequence αn → 0 (we assume nαn →∞ to avoid trivial situations) as n→∞:

(2.2) W
(n)
t ⇒Wt, 0 ≤ t ≤ 1,

Convergence of measures

(2.3) |x|W (n)
t ⇒ |x|Wt, 0 ≤ t ≤ 1.

will also be supposed in some of the assertions below.
We shall study statistics of the form

(2.4) Q∗n(t) =
∫
Qn(x)V (n)

t (dx).

Clearly these are L-statistics of the form (1.1) with

(2.5) vj = vj(t, n) = V
(n)
t

(
((j − 1)/n, j/n]

)
, j > 1, v1 = V

(n)
t

(
[0, 1/n]

)
.

Kernel estimators (1.6) are of course of the form (2.4) with V
(n)
t having density

α−1
n k((t − x)α−1

n ) and thus being of the same form for all t ∈ (0, 1) (in this case
W

(n)
t does not depend on n and t).
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Remark 1. Taking V
(n)
t to be the law of the variable Bi(n − 1, t)/(n − 1),

where Bi(n, p) denotes binomial random variable with parameters n, p, we get our
statistic Q̃n(t) from (1.4). In this case clearly αn = n−1/2, and the limiting law
is the normal

(
0, t(1− t)

)
distribution:

Wt(z) ≡Wt((−∞, z]) = Φ
(
z(t(1− t))−1/2

)
,

Φ is the standard normal distribution.

Now let us make a small digression. The use of the e.q.f. for statistical
inference is a common practice (and any use of order statistics can be viewed this
way too), although it still looks less natural and convenient than the use of the
e.d.f. Of course, these two objects are in duality (1.2) and behavior of one of
them determines uniquely the behavior of another. It is well known that (by the
Glivenko – Cantelli theorem)

sup
t
|Fn(t)− F (n)(t)| = sup

t
|Un(t)− t| ≡ sup

t
|Rn(t)− t| → 0

where Un(t) = Fn(Q(n)(t)) is the e.d.f. and Rn(t) = U−1
n (t) is the e.q.f. for the

sample

(2.6) Yk = F (n)(Xk)

from the uniform [0, 1] distribution. On the other hand, if the family {Q(n)}n≥1

is equicontinuous, it follows from the representation

(2.7) X(k) = Q(n)(Y(k)),

where Y(k) are order statistics of the uniform sample (2.6), that

sup
t
|Qn(t)−Q(n)(t)| = sup

t
|Q(n)(Rn(t))−Q(n)(t)| → 0 as n→∞.

Moreover, behavior of the corresponding empirical process is closely related
to that of the empirical quantile process as well. Assume for the sake of simplicity
that all

(2.8) F (n)(t) ≡ t, 0 ≤ t ≤ 1

(which is not much of a restriction of generality in view of (2.6) and (2.7)). Then,
as it was proved in Vervaat [29] (see also Borovkov [4]), the empirical process

(2.9) n1/2(Fn(t)− t)⇒ u as n→∞,

with continuous process u in the limit, if and only if

(2.10) n1/2(Qn(t)− t)⇒ −u as n→∞,

5



Remark 2. Convergence of the type un ⇒ u here and in what follows is
that of distributions on the Skorokhod space D[0, 1] of right continuous functions
having left side limits. However, if the limiting processes are continuous, one can
understand it as the possibility of constructing of versions of the processes un and
u on a common probability space so that un converges to u in uniform topology
almost surely, see Skorokhod [26] and e.g. Billingsley [2].

Now we turn to the ‘weighted’ e.q.f. Q∗n from (2.4) and compare its limiting
behavior with that of Qn. First we show that these two are asymptotically first-
order equivalent (here we make no assumptions on dependence and distributions
of X’s). Put, for a sequence βn > 0, n ≥ 1,

Yn(t) = βn(Qn(t)− t), Y ∗n (t) = βn(Q∗n(t)− t), t ∈ [0, 1].

Theorem 1. Let conditions (2.1) and (2.2) be satisfied.
i) If, for any t ∈ (0, 1), the e.q.f. Qn(t) → t as n → ∞, then also Q∗n(t) →

t, t ∈ (0, 1). In both cases convergence is uniform.
ii) If, for some βn →∞, the processes

(2.11) Yn ⇒ u,

u(t) being a stochastic process in C[0, 1], and βnδ(n) → 0 as n→∞, then, for any
fixed t ∈ (0, 1), the sequence of random variables Y ∗n (t) converges in distribution
to u(t) as n→∞. This convergence takes place for the processes:

Y ∗n ⇒ u,

if

(2.12) for any ε > 0, V
(n)
t ({x : |t− x| > ε})→ 0 as n→∞

uniformly in t.

Proof. i) follows immediately from (2.12) which in turn follows from condi-
tion (2.2). Indeed,

Q∗n(t)− t =
∫

|x−t|≤ε

(
Qn(x)− t

)
V

(n)
t (dx) + o(1),

and the integral admits (by monotonicity of Qn) the lower and upper bounds

(Qn(t∓ ε)− t)V (n)
t ({x : |t− x| ≤ ε})

respectively, which converge correspondingly to −ε and ε as n → ∞. Since
ε > 0 is arbitrary, the assertion follows. The limiting function is continuous, and
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hence the uniformitiy of the convergence can easilly be shown using a standard
‘monotonicity and compactness’ argument.

ii). By the Skorokhod representation theorem (Skorokhod [26]), we can as-
sume without loss of generality, that our processes Qn and u are given on a
common probability space and

Yn(t) = u(t) + εn(t)

where θn = supt |εn(t)| → 0 a.s. as n→∞. Therefore

Y ∗n (t) =βn
∫

(Qn(x)− x)V (n)
t (dx) + βn

∫
(x− t)V (n)

t (dx) =

=
∫
u(x)V (n)

t (dx) + βnδ
(n)
t + θ̃n, |θ̃n| ≤ θn.

The first term in the last line here tends to u(t) similarly to i) by continuity of
u(t), and this convergence is uniform if (2.12) holds unifromly in t, which implies
the convergence of processes Y ∗n ⇒ u (see Remark 2 above).

Now we turn to the second order properties of Q∗n(t). This averaged function
turns by obvious reasons to be uniformly closer to the theoretical quantile function
Q(n)(t) = t, 0 ≤ t ≤ 1. We restrict ourselves to the case when the limiting Yn(t)
process is the Brownian bridge b(t), 0 ≤ t ≤ 1, which is the case e.g. if the sample
is i.i.d. To give a ‘more quantitative’ idea of how large such a reduction can be,
recall that the process b(t) has stochastic differential

db(t) = − b(t)
1− t

dt+ dw(t),

w(t) being the standard Wiener process. Hence if the deviation b(t0) of the
Brownian bridge from zero is large at some point t0, the both processes b(t0 + s)
and b(t0 − s), s ≥ 0, drift towards zero the faster the large b(t0) is (recall that
b(t) is time-reversible). Therefore the ‘averaging’ (2.4) will be ‘most efficient’ at
the extremum points of the trajectory of b(t).

We shall make use of the following useful characteristic of the closeness of
the laws of two processes u(t) and v(t), 0 ≤ t ≤ 1, introduced in Borovkov and
Sakhanenko [3]: for ε > 0, we put

λ(u, v, ε) = inf P(sup
t
|u(t)− v(t)| > ε),

where the infimum is taken over the set of all possible constructions of the two
processes on a common probability space. We note here only that

Λ(u, v) = inf{ε : λ(u, v, ε) < ε}

is the Lévy – Prokhorov distance between the distributions of u and v generated
by the uniform topology.
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Introduce the deviation process

(2.13) Zn(t) = βnα
−1/2
n

(
Q∗n(t)−Qn(t)

)
, 0 ≤ t ≤ 1,

and let

(2.14)

Ht = lim
n→∞

[∑
|y|
(

∆W (n)
t (y)

)2

+

+ 2

∞∫
0

z (1−W (n)
t (z)) dW (n)

t (z)− 2

0∫
−∞

zW
(n)
t (z − 0) dW (n)

t (z)
]

if the limit exists (sum is over the set of all jumps ∆W (n)
t (y) of the function

W
(n)
t (y) as usual). Note that the behavior of the expression in brackets in (2.14)

depends heavily upon how does W (n)
t converge to the limit Wt near the jumps of

the latter. If Wt is continuous, conditions (2.1) – (2.3) are easily seen to imply
that the limit in (2.14) always exists (we just recall that in this case W

(n)
t (z)

converges to Wt(z) uniformly in z), and

(2.15) Ht = 2

∞∫
0

z(1−Wt(z)) dWt(z) + 2

0∫
−∞

|z|Wt(z) dWt(z).

For a symmetric continuous limit law Wt,

(2.16) Ht = 4

0∫
−∞

|z|Wt(z) dWt(z).

Theorem 2. Let conditions (2.1) and (2.2) be satisfied, and, for any ε > 0,

(2.17) λ(Yn, b, εα1/2
n )→ 0 as n→∞

and

(2.18) α−1/2
n βnδ

(n) → 0,

where δ(n) is from condition (2.1).
Then the finite-dimensional distributions of the process Zn converge to those

of the Gaussian white noise process with mean 0 and variance Ht.

Remark 3. In the standard i.i.d. case βn = n1/2, and hence, for the averaging
(1.4) we have αn = n−1/2 and

(2.19) Wt(z) = Φ
(
z(t(1− t))−1/2

)
,
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(see Remark 1), and the normalizing factor in (2.13) is n3/4. Further, for the
specified law V

(n)
t , we have

1∫
0

xV
(n)
t (dx) =

1
n− 1

EBi(n− 1, t) = t.

Hence δ(n) = 0 and condition (2.18) is fulfilled. On the other hand, it was shown
in Komlos et al. [18] that, say,

λ(Yn, b, n−1/2 log2 n)→ 0,

and therefore condition (2.17) is also satisfied. Now (2.16) and (2.19) give us the
limiting variance

H̃t = 4
(
t(1− t)

)1/2 0∫
−∞

|x|Φ(x) dΦ(x) = (21/2 − 1)
(
t(1− t)

π

)1/2

,

for the last equality see e.g. Section 2 in Dehling et al. [5]. Thus relation (1.5) is
the special case of our Theorem 2.

Proof of Theorem 2. We have from our assumptions that, for a representation
on a common probability space,

Qn(t) = t+
1
βn
b(t) +

εn(t)
βn

,

where P(Ωn) → 0 for the event Ωn = {supt |εn(t)| > γn} for a sequence γn =
o(α1/2

n ). One has

Zn(t) =α−1/2
n

∫
βn
(
Qn(x)−Qn(t)

)
V

(n)
t (dx) =

=α−1/2
n

∫ (
b(x)− b(t)

)
V

(n)
t (dx)+

+α−1/2
n βn

(∫
xV

(n)
t (dx)− t

)
+ α−1/2

n ε∗n(t) = I1 + I2 + α−1/2
n ε∗n(t),

where Ij = Ij(t), and ε∗n(t) ≤ 2γn on the complement event Ωcn and hence the
last term tends to zero in probability. Now we have also that

|I2| ≤ α−1/2
n βnδ

(n) → 0

by assumption (2.18) of the theorem. The first integral I1 is clearly a Gaussian
random variable with zero mean. Since the process b(t) has covariance function

r(x, t) = E(b(x)b(t)) = x ∧ t− xt for x, t ∈ [0, 1],
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and
r(t+ αny, t+ αnz) = t+ αn(y ∧ z)− t2 − tαn(y + z)− α2

nyz,

we have from the Fubini theorem that

(2.20)

E
(
I2
1 (t)

)
=

1
αn

E

 1∫
0

1∫
0

(
b(x)− b(t)

)(
b(s)− b(t)

)
V

(n)
t (dx)V (n)

t (ds)

 =

=
1
αn

∫
W

(n)
t (dy)

∫
W

(n)
t (dz)

(
r(t+ αny, t+ αnz)−

− r(t+ αny, t)− r(t, t+ αnz) + r(t, t)
)

=

=
∫
W

(n)
t (dy)

∫
W

(n)
t (dz)

(
y ∧ z − 0 ∧ y − 0 ∧ z −−αnyz

)
=
∫ ∫

ϕ(y, z)W (n)
t (dy)W (n)

t (dz)− αn
(∫

yW
(n)
t (dy)

)2

,

where

(2.21) ϕ(y, z) =
{
|y| ∧ |z| for yz > 0,
0 otherwise,

and the last term in (2.20) is O(α−1
n δ(n)2

) = o(1) by the assumption of the theo-
rem.

The first integral in the last line of (2.20) is easily seen from (2.21) to be
equal to

∞∫
0

∞∫
0

y ∧ zW (n)
t (dy)W (n)

t (dz) +

0∫
−∞

0∫
−∞

|y| ∧ |z|W (n)
t (dy)W (n)

t (dz) =

=
∑
|y|
(

∆W (n)
t (y)

)2

+ 2

∞∫
0

dW
(n)
t (z) z ·

∞∫
z

dW
(n)
t (y)+

+ 2

0∫
−∞

W
(n)
t (dz) |z|

z∫
−∞

dW
(n)
t (y) =

=
∑
|y|
(

∆W (n)
t (y)

)2

+ 2

∞∫
0

(
1−W (n)

t (z)
)
z dW

(n)
t (z)+

+ 2

0∫
−∞

W
(n)
t (z − 0) |z| dW (n)

t (z)→ Ht,

the sum here being the result of integrating along the diagonal.
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To complete the proof of Theorem 2, it remains to show that I1(t1) and
I1(t2) are asymptotically uncorrelated for t1 6= t2. Similarly to (2.20), we have
for a = t2 − t1 > 0

E
(
I1(t1)I1(t2)

)
=

=
1
αn

E

 1∫
0

1∫
0

(
b(x1)− b(t1)

)(
b(x2)− b(t2)

)
V

(n)
t1 (dx1)V (n)

t2 (dx2)

 =

= αn

∫ ∫
y1y2W

(n)
t1 (dy1)W (n)

t2 (dy2) + o(1)→ 0,

where the integration domain is

D =
{

(y1, y2) : y2 − y1 > −
a

αn
, y2 > −

a

αn
, y1 <

a

αn

}
,

and the integral over the complement Dc is easily seen from our conditions (2.1)
– (2.3) to be o(1).

Now we shall show that the deviation Zn(t) is negatively correlated with the
quantile process Yn(t) and evaluate the asymptotic deficiency of sample quantiles
w.r.t. their averaged versions (2.4). In the remaining part of the paper, we
consider only the i.i.d. case with X’s uniformly distributed over [0, 1] (so that
(2.11) holds with u(t) = b(t) and βn = n1/2, while αn can be arbitrary).

Theorem 3. Let conditions (2.1)− (2.3) be satisfied. If X1, X2, . . . are i.i.d
with the uniform distribution on [0, 1], then for n→∞

(2.22) E
(
Zn(t)Yn(t)

)
= α1/2

n Jt + o(α1/2
n ),

where Jt =
0∫
−∞

yWt(dy) < 0.

Proof. Put k = [nt] + 1, t ∈ (0, 1), and recall notation vj from (2.5). Then

(2.23)

E
(
Zn(t)Yn(t)

)
= E

{
n1/2α−1/2

n (Q∗n(t)−X(k))×

×
(
n1/2

(
X(k) −

k

n+ 1

)
+ n1/2

(
k

n+ 1
− t
))}

=

= nα−1/2
n

n∑
j=1

vjE
(
X(j) −X(k)

)(
X(k) −

k

n+ 1

)
+O(n−1/2)

To estimate the last sum, recall that

(2.24) EX(j) =
j

n+ 1
, E

(
X(j) −

j

n+ 1

)(
X(k) −

k

n+ 1

)
=

j(n+ 1− k)
(n+ 1)2(n+ 2)
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for j ≤ k (see e.g. Lemma 1.7.1 in Reiss [23]).
Hence the sum is equal to

(2.25)

S =
n∑
j=1

vjE
(
X(j) −X(k)

)(
X(k) −

k

n+ 1

)
=

=
n∑
j=1

vjE
(
X(j) −

j

n+ 1

)(
X(k) −

k

n+ 1

)
+

+
n∑
j=1

vj
j − k
n+ 1

E
(
X(k) −

k

n+ 1

)
−

n∑
j=1

vjE
(
X(k) −

k

n+ 1

)2

=

=
n∑
j=1

vjE
(
X(j) −

j

n+ 1

)(
X(k) −

k

n+ 1

)
− k(n+ 1− k)

(n+ 1)2(n+ 2)
.

The sum of covariances here equals, after multiplication by (n+ 1)2(n+ 2), to

(2.26)

∑
j≤k

vjj(n+ 1− k) +
∑
j>k

vjk(n+ 1− j) =

= −k
n∑
j=1

jvj + (n+ 1)
∑
j≤k

jvj + k(n+ 1)
∑
j>k

vj .

Now (2.25) and (2.26) give

S =− k

(n+ 1)2(n+ 2)

n∑
j=1

jvj +
1

(n+ 1)(n+ 2)

∑
j≤k

jvj+

+
k

(n+ 1)(n+ 2)

∑
j>k

vj +
k2

(n+ 1)2(n+ 2)
−− k

(n+ 1)(n+ 2)
=

=− k

n3

n 1∫
0

xV
(n)
t (dx) +O(1)

+
1
n2

(
n

k/n∫
0

xV
(n)
t (dx)+

+O(1) + k

1∫
k/n+0

V
(n)
t (dx)

)
+
k2

n3
−− k

n2
=

=− k

n2

1∫
0

xV
(n)
t (dx) +

1
n

k/n∫
0

xV
(n)
t (dx)+

+
t

n

1∫
k/n+0

V
(n)
t (dx) +

k2

n3
− k

n2
+O

(
n−2

)
=

=− k

n2

(
t+ δ

(n)
t

)
+

1
n

k/n∫
0

(x− t)V (n)
t (dx) +

t

n
+
k2

n3
− k

n2
+O

(
n−2

)
=

12



=
1
n

t∫
0

(x− t)V (n)
t (dx) + o

(
n−3/2α1/2

n

)
+O

(
n−2

)
=

=
αn
n

0∫
−∞

yW
(n)
t (dy) + o

(
n−3/2α1/2

n

)
+O

(
n−2

)
.

Conditions (2.1) – (2.3) imply that

0∫
−∞

yW
(n)
t (dy)→

0∫
−∞

yWt(dy),

and hence we have from (2.23) that

E
(
Zn(t)Yn(t)

)
=nα−1/2

n

(
αn
n

0∫
−∞

yWt(dy) + o
(
αnn

−1 + α1/2
n n−3/2

)
+

+O(n−2)
)

+O
(
n−1/2

)
= α1/2

n Jt + o
(
α1/2
n

)
which completes the proof of the theorem.

Knowing the asymptotics of the covariance (2.22), we can evaluate that of
the relative deficiency d∗(n) of Qn(t) w.r.t. Q∗(t) (defined according to (1.7) but
with Q̂n substituted by Q∗n).

Corollary 2. Under assumptions of Theorem 3,

lim
n→∞

d∗(n)
nαn

=
Gt

t(1− t)

with Gt = −2Jt −Ht.

Remark 4. Note that if the limiting law Wt is continuous, we have, from
(2.15) and conditions (2.1) – (2.3), the relation

Gt =− 2

0∫
−∞

yWt(dy)− 2

∞∫
0

y (1−Wt(y))Wt(dy)−

−−2

0∫
−∞

|y|Wt(y)Wt(dy) = 2

∞∫
−∞

yWt(y)Wt(dy)−−2

∞∫
−∞

yWt(dy),

which coincides for absolutely continuous Wt with Ψ(k), k = dWt(x)/dx, from
(1.10) (when

∫
x k(x) dx = 0).

Proof of Corollary 2. We have from (2.24) that

E
(
Qn(t)− t

)2 = n−1t(1− t) +O
(
n−2

)
.

13



On the other hand,

E
(
Q∗n(t)− t

)2 = E
(
Q∗n(t)−Qn(t) +Qn(t)− t

)2 =

= E
(
Qn(t)− t

)2 + 2E
(
Q∗n(t)−Qn(t)

)(
Qn(t)− t

)
+ E

(
Q∗n(t)−Qn(t)

)2
= n−1t(1− t) +O

(
n−2

)
+ αnn

−1
(
2Jt +Ht

)
+ o
(
αnn

−1
)

=

= n−1t(1− t)− αnn−1Gt + o
(
αnn

−1
)
.

Taking into account the main terms only, we get the following asymptotic relation
for m = n+ d∗(n):

m−1t(1− t) ≈ n−1t(1− t)− αnn−1Gt,

and hence

1− d∗(n)
n
≈
(

1 +
d∗(n)
n

)−1

=
n

m
≈ 1− αn

G(t)
t(1− t)

.

Corollary 2 is proved.

We are grateful to D. M. Chibisov, whose useful remarks helped to improve
the exposition of the paper.
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