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Summary

Ecologists frequently deal with the problem of finding an appropriate size
of the observation area such that all species of a certain community are rep-
resented in that area. A minimal area is — in a certain sense — the smallest
observation area with this property. In this paper we show that modelling
the spatial distribution of biological communitites by superpositions of ho-
mogeneous Poisson point processes not only allows for a simple explanation
of ”typical” forms of observed species—area curves, but gives also rise to ex-
plicit calculations of the distribution and moments (expectation, variance)
of the size of the corresponding minimal area. '
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1 Introduction

A very interesting empirically observed phenomenon which is treated in
various papers in the ecological literature is the log—log-linear form of the
so—called species-area curve; see e.g. Krebs (1985) or Begon, Harper, and
Townsend (1990) for a survey. The empirical species—area curve is obtained
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when the number of observed species is plotted against the area size. If one
assumes that the individuals of each species are dispersed in the plane ac-
cording to some probability distribution and samples are taken from selected
areas, each empirically observed species—area curve represents a realization
of a certain stochastic process, which is discontinuous, but weakly increas-
ing with area size and approaches in the limit the total number of species
when area size grows to infinity. Taking expectations of these realizations,
one obtains the [theoretical] species—area curve, which in general is contin-
uous, while maintaining the other two analytical properties (monotonicity
and asymptotics) of its empirical counterpart. In practical applications, the
empirical species—area curve is usually fitted by an appropriate continuous
function, representing the expected theoretical curve. Surprisingly, in many
investigations it was found out that when the empirical species—area curve is
plotted in a log—log scale, the fit of the empirical curve to a linear function
seems most appropriate. The above figure shows the result of such an analysis
for the species—area relationship for flowering plants in England, the smallest
individual area size being measured in Surrey, the largest representing the
whole of England (modified after Williams (1964); see also Krebs (1985), Fig.
24.8). There have been several attemps to explain from theory why such a
striking relationship might occur. May (1975) has given a nice explanation
by assuming a log—normal distribution for the species abundances. However,
as was already pointed out above, the species—area curve must eventually
approach the total number of species in the community with increasing area
size. In this paper, we shall show that the assumption of homogeneous spa-
tial Poisson processes for the dispersal of individuals of each species in the



plane does not not only give a likewise sufficient and simple explanation for
an approximate local log-log—linear species—area curve but also allows for
a mathematically rigorous definition of a "minimal area” for finding all or
most of the abundant species in a given community. Recently Schleier and
van Bernem (1995) have investigated this question using combinatorial ar-
guments to determine the probability of finding a certain selection out of all
abundant species, depending on sample size. They also consider similarity—
area curves in the sense of Weinberg (1978) who defines a ”minimal area”
by the degree of similarity between biological characteristics of the sampling
area and the total area supporting the whole community. In the present
paper, we shall use methods from point process theory and stochastic geom-
etry to show that a minimal area can quite naturally be defined as a certain
random set in R? with the property that it covers all species present, while
any ”smaller” subset does not. In particular, it is shown that formulas for
the distribution of the size (=Lebesgue measure) of this "minimal area” as
well as for its expectation and variance can easily be obtained in the Poisson
model. Generalizations of this concept to ”minimal areas” which cover not
all but only a certain subselection of species are also possible using standard
methods from statistics of extremes.

2 The Probabilistic Model

Let B denote the Borel o-field over R?, K the subcollection of all com-
pact sets, and m the corresponding Lebesgue measure. Suppose further
that in the observation areas A € B with m(A4) > 0 the individuals of s
species are distributed according to independent homogeneous Poisson pro-
cesses &, ¢ = 1,...,s each, with intensities A{,...,A; > 0. ILe., for all
Borel sets A € B, the random variables &;(A) — counting the number of in-
dividuals of species 7 abundant in A — are Poisson—distributed with mean
E&(A) = A;m(A), and for pairwise disjoint subsets Ay, ..., A, € B, the ran-
dom variables &;(A1),...,&(A,) are independent. Note that A might also
be an unbounded set, e.g. A = R?. As a consequence of the model, the point
process § with £(A) = 57_; €i(A) counting the individuals of all species in
Borel sets A € B also is a Poisson process, with intensity A = >>7_, A; (for
further details, see e.g. Diggle (1983)). The number Z(A) of species present
in a Borel set A can be represented as follows: Let

Zi(A) = 1 if &(A) >0 [i.e., species i is present in A] (1)
0 otherwise.
Then Z(A) = 3_;_, Z;(A), which is a sum of independent 0-1 valued random
variables with
E(Zi(4)) = P(Zi(A4)=1)=P(&(4) > 0)
1= P(6(4) = 0) = 1 — e~No4) 2)



and hence

s

(2(4)) = ZE Zi(a) =3 (1- Av‘mw). (3)

i=1

Clearly, Z(A) < s, with equality being achieved only if all species are rep-
resented in A. A minimal area in this model now is a suitable set = € B
such that Z(Z) = s, and Z(A) < s for any other "smaller” set A C E
To make such a definition mathematically rigorous, consider the collection
U={K € K| m(K) = 1} of all compact sets with unit area which are star—
shaped (i.e., the origin 0 € K and for all points x in K, the line segment
between O and x is contained in K). For such a set K, define

pr =inf{r > 0| Z(rK) =s}, ZEx =pxK (4)

where 7K = {rx | x € K'} is the set K scaled by the non—negative factor r.
Call Ex a minimal area of type K. In the language of stochastic geometry, Zg
is a so—called random set (see e.g. Stoyan, Kendall, and Mecke (1987)), and
its size Wx = m(Zk ) is a random variable whose distribution is independent
of the particular shape of K:

P( ﬁ{s,-(Ax) >0}) = P( (j]{zi(Ax) =1}
= H (1 - e—Aém(Aw)) = H (1= e2ir) (5)

=1 =1

P(Wg < x)

l

for all Borel sets A, such that m(A;) = =, « > 0. (For formal proofs, see
Section 5.) Intuitively, this can be seen as follows: Let z > 0 and A, = /K
be of type K. Then m(A;) = zm(K) = x and for the corresponding events,
{Wk <z} = N2 {Z2i(A2) = 1} = ;= {&(A4z) > 0}. The last equation
reflects the idea that when any area A, of size m(A;) = « already carries
all abundant species, then the "minimal area” should be at most this size
or smaller. Recall that for homogeneous Poisson processes, the distribution
of &(Az) is the same for all Borel sets A, having measure m(A;) =

Likewise, if 2k (i) denotes the minimal area of type K for the point process

&; representing the individuals of species i, with scaling factor pg (i), we have

pk = max{pk(1l),...,px(s)}, Ex UEK(i),
Wk = max{Wx(l),..., Wk(s)}. B (6)

Note that for a meaningful definition of a minimal area, we cannot simply
take ”"the” smallest Borel set containing all s species because this would with
probability one be a random set consisting of exactly s distinct points in R?



(e.g. the collection of those points from each of the s Poisson processes being
closest to the origin, or any other fixed location in the plane). Such a set
would clearly always have measure zero and is hence of no worth for any
practical application, not to speak of the fact that in order to determine such
a set the locations of all points must be known, hence complete knowledge
of the whole community would be necessary.

The definition of a minimal area as above also makes sense from an ecological
point of view. For instance, if data are usually obtained from quadrat counts
then K is a square, and if we assume that the location of the observer in the
plane is defined to be the origin 0 € R? — which we can do w.l.o.g. due to the
fact that homogeneous Poisson processes are distributionally translation and
rotation invariant — the minimal area Zx can be considered to be the physi-
cally smallest square with center 0, say, which contains all abundant species.
Note that =k varies with the location of the observer, which again reflects
that actually Zk is a random set. Therefore, characteristic parameters like
mean and variance of the minimal area size m(Eg ) are of specific interest.

3 Calculating Moments for the Minimal Area
Size Distribution

The main mathematical facts from Section 2 (see also Section 5, Theorem 2)
can be summarized as follows. '

Proposition 1. Let K € U be a compact, star—shaped set of unit area and
Zxk the minimal area of type K. Then the distribution of the minimal area
size, Wg = m(ZEg), is given by

P(Wk <z)= H (1- e M),z >0, (7)

and the species—area curve is given by

s

E(Z(4:) =) (1-eM"), &>0 (8)

=1
for any Borel set A, € B with size m(A4;) = 2.

Using this formula, it is possible to give explicit expressions for the mean
E(Wk) and the variance o%(Wk) in terms of A1,...,A,.

Proposition 2. Under the assumptions of Proposition 1, we have

E(Wk) = kz_l(_l)k_l ZZ )\z‘l"}‘--l-‘i‘)‘ik ()

1<i1<i3<...<ix<s
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with o?(Wk) = E(WZ) — {E(WK)} , and, more generally, for the moment

generating function,

E(eth):z St Z Z A,Az.l{u++j;zjtf_t (11)

1<11<82<... <1 <5

for t < min{Aq,...,A;}, hence

E(WR) = n!Z(*l)k-I ZZ (s +..1.+)\z'k)” (12)

1< <i2<... <1 <s

for all n € N.

Proof. Recall that for any real numbers ay, ..., as; we have:

1_11(1_%)_2 Yy Ha% o (13)

= 1<11<i2<...<ip<s j=1

It suffices to prove relation (11). If we denote by I'(z) = P(Wg < ), > 0,
the distribution function of Wx and by f the corresponding density, then,
by partial integration, for ¢ < min{Ay,..., A},

B(eWr) = /OO €' f(z) dx = 1 +t[oo et |1 - F(z)] dz

0

- m/ z( DT Y SRty

1<91<i2<...<ix <5

= 1+Z(—1)’“-1 PIEDD /e'{zfﬂ’\'ff}wd;p

1<41<12<...<ix <5

= 1—|—;(_1)k—1 ZZ /\il—i-.--t-l-)‘ik—t (14)

1<i1<i2<...<ix <3

from which relation (11) follows readily since by (13), for a; = 1,

E(etWK) = 1+Z( k! Z Z /\il+~-t+)‘ik"_t

1<21<Z2< <’Lk<S

t

= S TP [

1<41<i2<...<ix<s

S Aiy oA
= ;('—1)7"1 DD Ai1z+-..+Az-k2k—t‘ (15)

ISi1<i2<.<.<’£kSS




The remaining formulas are proved by differentiation of relation (11).

In most practical situations, when typically s is large (more than 10, say), it
might be very cumbersome to compute the mean and variance of the mini-
mal area size by formulas (9) and (10) unless all A; are equal, a case which
will be treated separately in the sequel. However, a suitable application of
symbolic Computer Algebra programs like MAPLE® could be recommended
for such cases. The following figure shows a possible worksheet for MAPLE
V Release 3 under WINDOWSY for calculating mean and variance of the
size of the minimal area and for plotting the theoretical species—area curve
and the density f of the size distribution of the minimal area. Figures 3 and
4 were created just this way, using as input the following 10 intensities for
the corresponding Poisson processes: A1 = ... = A7 = 0.1, Az = 0.15, Ag =
0.3, Ao =2.7.
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During the execution of the worksheet, data are first read from the file
MINAREA.DAT containing the intensities as non-negative numbers in ASCII
format, collected in the vector lambda. The letter S denotes the species—area
curve, F the cumulative distribution function of Wy, and £ its density. pu
and o represent the mean E (W) and the standard deviation o(Wgk). Ad-
ditionally, the expected number of species detected in an area of size p,
1.e. E(Z(A#)), is computed. For the example under consideration, p =
26.32, 0 = 12.13. The expected number of detected species 1s 9.47 which
is close to the number of all species, 10. Note that the present worksheet has
been optimized w.r.t. the computation speed and memory capacity, so that
good results are obtained already on PC’s with 8 MB RAM or less.

The graph in figure 3 shows quite clearly that a local approximate log-log
linear form of the species—area curve can be obtained by a suitable choice of
intensities. Typically, in such a community we have a few dominant species
characterized by ”large” values of the intensities (here: A = 2.7) and a
larger number of more rare species characterized by ”small” values of the
intensities (here: Ay = ... = A7 = 0.1). A Poisson model of the above form
therefore explains quite naturally why the log-log linear shape of the species—
area curve is frequently observed. For practical applications, the intensities
have of course to be estimated, e.g. in a ”pilot study”, before the minimal
area characteristics can be calculated explicitly. Statistical methods for this
type of problem are well-developed, see e.g. Diggle (1983), sections 3.2.2 and
3.3.3. In order to see the influence of “rare” species on the minimal area size,
one could add a few fictional species to the observed assemblage with ”low”
values for the intensities, and compare the results.
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The situation is analytically more simple if we assume that all \; = A > 0 are
equal, which corresponds to the case of maximal diversity in the community
(see e.g. Magurran (1988)). In this case, the minimal area size W is simply
the maximum of s independent, identically exponentially distributed random
variables with parameter A, which is — after suitable normalization — asymp-
totically doubly exponentially distributed when s — oo. The calculation of
moments reduces to

11 Ilns+C
=1
1 1 72

for large s, where C = 0.577216 . .. denotes Euler’s constant (see e.g. Pfeifer
(1987), Lemma 0.3 for a simple direct proof). The expected number of species
detected in an area A, € B of size pu here is approximately

e—C‘

E(Z(A,)) = s(l - e_A“) ~ s (1 - —> =s—eC=s-05614... (18)

s

for large s, i.e. the loss in the number of detected species is less than one (the
r.h.s. of (16) also provides a lower bound of E(Wk) if formally C is chosen
to be zero). Note that the size of the minimal area here increases only as In s
when s goes to infinity.
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4 Possible Generalizations and Conclusions

At first glance, two mainstreams of generalizations seem to be of particular
interest here:

1. consideration of non—homogeneous Poisson processes

2. ”minimal areas” which cover t out of s species with ¢ < s.
In the first case, it makes sense to maintain the original definition of Zg,
assuming again that the origin 0 corresponds to the location of the observer,
i.e. the shaping set K is scaled around the observer by the random factor
pr until all s species are covered. For the minimal area size distribution, we
have, similarly as above,

Pk <n) = P60 > 0}) = [ PUE(/FE) > 0)

= 11 (1 — P(&(VrK) = 0)) (19)
i=1
= JI(1-ePe0), 1>, (20)
=1
which can easily be evaluated if the intensity measures F§; are explicitly
known. Note, however, that unlike in the homogeneous case, the distribution
of Wk now also depends on the shape of K, in general, as well as on the
”physical” location of the origin 0 in the observation plane.

In the second case, the definition of the individual pg(7) can likewise be
maintained; an appropriate definition of a t—out—of-s minimal area could
then be

pr =pklt:s], Ex =pkK, (21)

where pg[l:s] < pk[2:5] <...< pgls: s] denote the corresponding order
statistics. The distribution of Wx can generally be evaluated by combina-
torial arguments, similarly as above; e.g., one obtains in the homogeneous
Poisson case, for t < s:

pwk<n)=P(  |J (&K >0 n () {&WK) = 0})

1€51<..<ji1<s k=1 $€{1,....s N\ {ja,.0de}
t
= > JIrewrE)>0) I] PH&(VTK) =0})
1<51<...<j1<s k=1 ie{l,....s \{j1, .74}

= zexp{—zxir}f{(l—e-w), r>0. (22)

1<51<.<518s ig{f1,..,J¢} k=1

Of course, both aspects could also be combined in one model. The practical
limitation of such approaches, however, lies in the fact that detailed spatial
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information about the dispersal of individuals is necessary, which will often
not be available.

Corresponding modifications in the MAPLE worksheet given above can easily
be made by replacing the original expression for F by the appropriate one for
the cumulative distribution function of Wi .

5 Proofs & Facts from Stochastic Geometry
and Point Processes

Our notation closely follows Stoyan, Kendall, and Mecke (1987). Let F
denote the collection of all closed subsets of R%, and for a compact set K € K,
Fx ={F € F| FNK # 0}. Let further § = o{Fx | K € K} denote the
correspondingly generated sigma—field. A two—dimensional random closed
set 2 is a (F, §)—measurable map defined on a suitable probability space
(2, A, P) where A is a o—field over the non—empty set Q.

Lemma 1. Let K € K be a compact set and p a non—negative and finite
random variable. Then = = pK is a random compact set.

Proof. Let L € K be an arbitrary compact set. For every real number
r > 0, the set 7K is also compact, and either rK N L # 0, or 7K and L have
a positive distance of each other. Hence the set 7= {r > 0 | rK N L = 0}
is a countable union of open intervals in R' and thus a Borel set. Since
{r>0]|rKNL#0}=(0,00)\T, the map r — rK is (F, §)—measurable,
and so is pK.

Lemma 2. Let A : F x R* — {0,1} : (F,x) — 1p(x) where 1p denotes
the indicator random variable for the set F'. Then H is measurable w.r.t. the

product o—field § ® B.

Proof. By the closedness of sets in F, we have

H'{1}) ={(F,x)e FxR*[xe F}= (| |J Fx.. x Kin €T OB

n=1i=1

where Kj, € K can be chosen as compact sets with diameters ®(K;,) = ¢, |
0, n — oo for all 7 and Ufil K;, = R? for all n.

Theorem 1. Let y be a o—finite measure on B and = a random closed set.
Then p(ZE) is a non—negative random variable.

Proof. By Lemma 2, the map (Z,x) — 1z(x) for x € R? is a product—
measurable random variable, hence by the o—finiteness of y,

w(E) = [ 1200 plax)
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is also measurable and thus a random variable.

Lemma 3. Let n be a homogeneous Poisson point process over R? with
intensity v > 0, and K € K a non—empty compact set with m(KX) > 0. Then

p=inf{r > 0| n(rK) >0}

is — up to possible modifications on sets of measure zero — a finite random

variable with

—-ym(K)r2
3

Plp>r)=ce r >0,

i.e. p? has an exponential distribution with parameter vm(K):

P(p*>r)=Plp>+r)=e"™Er 150

Proof. We have {p > r} = {n(rK) = 0}, r > 0, hence
P(p>r) = P(p(rK) = 0) = =™irK) = g=vmr?

Note that it is always possible to modify p on sets where p = oo (which
are of measure zero), so that w.l.o.g. one can always assume that p is finite
everywhere. For the subsequent Theorem, it is tacitly assumed that such
modifications are made where necessary.

Theorem 2. Let, with the notation of Section 2, denote
pr =inf{r >0 | Z(rK) =s}, Ex =pxK

for K € Y. Then pg is a finite random variable, p3 is distributed as the
maximum of s independent exponentially distributed random variables with
parameters A1, ..., A; each, i.e.

8

PGk < =TT (1-¢77), >0

i=1

and Zx is a random compact set. The size distribution of Wx = m(Eg)
coincides with the distribution of p% .

Proof. Let for i = 1,...,s denote pg (i) = inf{r > 0 | Z;(rK) = 1}, as
above. By Lemma 3, px (i) is a finite random variable with p% (¢) being
exponentially distributed with parameter };, i.e.

P(p_%((z) < r) e = A S|}

Hence

pPK = inf{’r >0 | ﬂ{fi(rK) > 0}} = max{pk(1l),...,px(s)},
i=1
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from which the first statement follows readily. For the second part, first
note that ZEx is a random compact set by Lemma 1. Hence by Theorem 1,
m(Zg ) is a random variable which is finite by the compactness of K and the
finiteness of px with

P(m(PKK) < r) - P(m(pKK) < m('ﬁff)) - P(pim(K) < rm(K))

= P} <) = P(maxpk(1), ., pk(s)} < r)

3

= li[P(P%f(i) <r=]] (1 _ e—'/\:‘r)

=1
for r > 0.
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