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Abstract

In this paper we consider improvements in the rate of approximation for the

distribution of sums of independent Bernoulli random variables via convolutions

of Poisson measures with signed measures of specific type. As a special case, the

distribution of the number of records in an i.i.d. sequence of length n is investigated.

For this particular example, it is shown that the usual rate of Poisson approximation

of order O(1/logn) can be lowered to O(1/n2). The general case is discussed in

terms of operator semigroups.

SIGNED MEASURES; RECORDS; OPERATOR SEMIGROUPS

AMS CLASSIFICATION: PRIMARY: 60 F 05, 28 A 33; SECONDARY: 47 D 03

1. Introduction

Let X1, . . . , Xn be independent random variables with a continuous cumulative
distribution function. We say that Xk, k ≤ n, is a record of this sequence if Xk >
max{X1, . . . , Xk−1}. By convention, X1 is always a record value. The corresponding
record indices I1, . . . , In ∈ {0, 1} mark the times when new records occur, i.e. Ik = 1
iff Xk is a record. Due to the remarkable Dwass – Rényi theorem [Dwass (1960), Rényi
(1962)] we know that the record indices are independent with success probabilitites
pk given by

pk = P(Ik = 1) = 1/k, k = 1, . . . , n.

In the first part of the paper we consider the behaviour of the distribution function

Gn(x) = P(Sn ≤ x), Sn =
n∑
k=2

Ik (1)

of the number Sn of ”true” records. Apart from the natural motivation, related to
the theory of records, the study of the distribution function Gn is of interest for other
applications too, e.g. in connection with the secretary problem (cf. Pfeifer (1989)) or
for the linear search problem of the maximum element in a field of n entries, where
Sn denotes the number of re–storages during the procedure (for details see e.g. Kemp
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(1984) and Pfeifer (1991)). Another field of relevance is the average case analysis of
the simplex method in linear programming (see Ross (1982) and Deheuvels and Pfeifer
(1987)). Clearly,

νn = ESn =
n∑
k=2

1
k

= log n+ γ − 1 +O

(
1
n

)
, (2)

Var(Sn) =
n∑
k=2

1
k

(
1− 1

k

)
= log n+ γ − π2

6
+O

(
1
n

)
(3)

as n→∞, where γ = 0.5772 . . . is Euler’s constant. Since Sn is the sum of independent
bounded r.v.’s, we are in the range of normal approximation. However, as is easy to
see, the rate of this approximation is only O(log−1/2 n). Likewise, Sn is the sum
of {0, 1}-valued r.v.’s, and although the success probabilities for the first summands
of Sn are not small, Poisson approximation is also possible due to the fact that the
variance–to–mean–ratio tends to one for n → ∞. Moreover, the exact first term in
an expansion of the rate of convergence is known: if Πλ is the distribution function of
the Poisson distribution with mean λ, then

sup
x
|Gn(x)−Πνn(x)| = π2/6− 1

2νn
√

2πe
+O(log−3/2 n) =

=
β

log n+ γ − 1
+O(log−3/2 n), β = 0.078 . . . ,

(4)

which is better than for the normal approximation (for a more thorough discussion
of a comparison between normal and Poisson approximation in such cases, see De-
heuvels and Pfeifer (1988)). However, the rate of convergence is still far from being
sufficient, from a practical point of view. In such situations, it could therefore be
fruitful to turn to a ”second-order” approximation, obtainable usually via some cor-
rection of the main term (for second-order refinements of the Poisson approximation
see e.g. Borovkov (1988) and references therein). In the particular situation under
consideration, this procedure is indeed very promising: the error of the ”corrected”
approximation, which is just a convolution of Πνn with some fixed signed measure and
a two-point distribution, is of the order O(n−2), compared with O(log−1 n) in (4).

The third section of the paper is concerned with a discussion of possible extensions
of such correction techniques to more general situations. It will be shown there that
indeed a general procedure of this kind exists if for the success probabilities pk there
holds

∞∑
k=2

pk =∞,
∞∑
k=2

p2
k <∞, (5)

which covers the case of records above. However, this general method which is based
on the semigroup approach as originally developed in Deheuvels and Pfeifer (1986) is
not as sharp as the particular approach possible in the very special situation outlined
above. For records in particular, the general method gives a rate of approximation of
O
(
(n log n)−1

)
only, which is of course still considerably better than what is achievable

otherwise. Problems concerning record indicators of this general form occur e.g. in
the generalized secretary problem (see Pfeifer (1989)) or in connection with search
problems when non–uniform distributions for the position of entries are possible (see
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Pfeifer (1991)). In extreme value theory, such indicators occur in a natural way also
in Nevzorov’s record model (cf. Nevzorov (1988) and Borovkov and Pfeifer (1993)).

2. Refined Poisson approximation for the i.i.d. record model

Here we shall give a detailed analysis of the second–order approach via signed
measures for the Poisson approximation of the distribution of the number Sn of true
records in a sequence of n i.i.d. random variables.

Let L(x) be the distribution function of the signed measure on the integers with
generating function 1/Γ(1 + z), Γ(z) being the gamma-function,

Vn(x) = e−µn(E0(x) + lnE2(x)), µn =
1

2(n+ 1)
, ln =

1
2

(eµn − 1 + µn), (6)

Ek(x) corresponding to the distribution function of the unit mass concentrated in the
point k. Let further denote

Mn = Πλn ∗ L ∗ Vn, λn = log(n+ 1)− 3
2(n+ 1)

. (7)

This is the distribution function of a (possibly) signed measure, which in fact is easy
to evaluate. As for the explicit form of L, we have 1/Γ(1 + z) = 1/zΓ(z), and the
first 26 terms ck of the series expansion for 1/Γ(z) near zero (that is, the values of
the measure L) can be found e.g. in Abramowitz and Stegun (1964) (they decrease
in absolute value rather fast; say, |c9| ≈ 10−3, |c13| ≈ 10−6, |c26| ≈ 10−15). On the
other hand,

1
Γ(1 + z)

= (1 + z) exp

(γ − 1)z −
∑
k≥2

(−1)k

k
(ζ(k)− 1)zk

 , (8)

where ζ(k) is the Riemann zeta function. Note also that the coefficients bk in

exp

∑
k≥1

akz
k

 =
∑
k≥0

bkz
k

can be calculated easily using the recursive formula

bj+1 =
1

j + 1

j∑
m=0

(m+ 1)am+1bj−m, b0 = 1,

see e.g. Sect. 10.4 in Johnson and Kotz (1969) (the coefficients ak decrease exponen-
tially fast in our case: |ak| ∼ k−12−k).

Theorem 1. For n > 1,

∆ = sup
x
|Gn(x)−Mn(x)| ≤ CΓεne2εn +

1
16n(n+ 1)

,
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where

εn =
5

4(n− 1)2
, CΓ = max

|z|=1

∣∣∣∣ 1
Γ(z)

∣∣∣∣ < 1.9615.

Proof. The generating function of Sn is

gn(z) = EzSn =
n∏
j=2

(
1− 1

j
+
z

j

)
=

1
Γ(1 + z)

· Γ(n+ z)
Γ(n+ 1)

.

Now by the second Binet formula (see e.g. 6.1.50 in Abramowitz, Stegun (1964)), for
Re z > 0,

Γ(z) = exp

(z − 1
2

)
log z − z +

1
2

log 2π + 2

∞∫
0

arctan t/z
exp(2πt)− 1

dt

 .
Hence, for |z| = 1 < n,

Γ(n+ z)
Γ(n+ 1)

= exp
[
(n+ z − 1

2
) log(n+ z)− (n+

1
2

) log(n+ 1)−

− z + 1 + 2

∞∫
0

α− β
exp(2πt)− 1

dt
] (9)

where α = arctan
t

n+ z
, β = arctan

t

n+ 1
. Clearly,

α− β = arctan tan(α− β) = arctan
tanα− tanβ

1 + tanα tanβ

= arctan
[
− (z − 1)t

(n+ z)(n+ 1) + t2

]
≡ arctanA,

and |A| ≤ 2t/(n2 − 1 + t2) ≤ (n2 − 1)−1/2. Thus, using the fact that for complex z,
arctan z = 1

2i log
(
(1 + iz)/(1− iz)

)
is bounded in modulus by |z|/(1− |z|2),

| arctanA| ≤ |A|
1− |A|2

≤ |z − 1|t
n2 − 1

(
1− 1

n2 − 1

)−1

=
|z − 1|t
n2 − 2

,

and ∣∣∣∣∣∣2
∞∫

0

α− β
exp(2πt)− 1

dt

∣∣∣∣∣∣ ≤ 2|z − 1|
n2 − 2

∞∫
0

t

exp(2πt)− 1
dt =

|z − 1|
12(n2 − 2)

, (10)

since
∞∫

0

xν−1

exp(µx)− 1
dx = µ−νΓ(ν)ζ(ν), Reµ > 0, Re ν > 1
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(see e.g. 3.411 in Gradshteyn, Ryzhik (1980)). Now

(n+ z − 1
2

) log(n+ z)− (n+
1
2

) log(n+ 1) =

= (n+ z − 1
2

) log
(

1 +
z − 1
n+ 1

)
+ (z − 1) log(n+ 1) =

= z − 1 + (n+ 1)

(z−1)/(n+1)∫
0

log(1 + x) dx− 1
2

log
(

1 +
z − 1
n+ 1

)
+

+ (z − 1) log(n+ 1) = (z − 1)
(

1 + log(n+ 1)− 1
2(n+ 1)

)
+

+
(z − 1)2

2(n+ 1)
+

(z − 1)3θ1

6(n− 1)2
+

(z − 1)2θ2

4(n− 1)2
, |θi| < 1.

From this relation and from (9) and (10) it follows that

Γ(n+ z)
Γ(n+ 1)

= exp
[
λn(z − 1) + µn(z2 − 1) +

z − 1
(n− 1)2

θ3

]
, (11)

where |θ3| ≤ 1
4 |θ1||z−1|+ 1

6 |θ2||z−1|2+ 1
12 ≤

5
4 for |z| ≤ 1. Here the term exp

(
λn(z−1)

)
corresponds to Πλn(x), the term exp

(
µn(z2−1)

)
corresponds to Πµn,2(x) = Πµn(x/2).

Let now G−n = Gn ∗ Π−1
µn,2

, where Π−1
µn,2

, the inverse to Πµn,2 in the algebra
of distributions with convolution operation, corresponds to the generating function
rn(z) = exp(−µn(z2 − 1)); then

∆0 ≡ sup
x
|Gn(x)−G−n ∗ Vn(x)| ≤ sup

x
|Πµn,2(x)− Vn(x)| · var (G−n ) ≤ 1

16n(n+ 1)
.

Here we made use of the fact that for the total variation var(G−n ) ≤ 1 + 2/(2n + 1),
since

var(Π−1
µn,2

) = exp(2µn) ≤ 1 + µn
1− µn

= 1 +
2

2n+ 1
,

and also of the following bound implied by the choice of ln:

sup
x
|Πµn,2(x)− Vn(x)| = 1

2
(
1− e−µn − µne−µn

)
≤ µ2

n

4
=

1
16(n+ 1)2

. (12)

Clearly, ∆ ≤ ∆0 + ∆1, where

∆1 ≡ sup
x
|G−n ∗ Vn(x)−Πλn ∗ Vn ∗ L(x)| ≤ sup

x
|G−n (x)−Πλn ∗ L(x)|.

By Tzaregradskii’s (1958) inequality (cf. Kruopis (1986)),

∆1 ≤
1

2π

π∫
−π

|gn(eit)rn(eit)− ωn(eit)|
|eit − 1|

dt, (13)

where ωn(z) = exp(λn(z − 1))/Γ(1 + z). Now, for |z| = 1, we have

|Γ(z + 1)| = |Γ(z)|, Re (z − 1) ≤ 0, |z − 1| ≤ 2,
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and hence one obtains from (11)

|gn(z)rn(z)− ωn(z)| = 1
|Γ(z)|

·
∣∣∣∣Γ(n+ z)
Γ(n+ 1)

e−µn(z2−1) − eλn(z−1)

∣∣∣∣ ≤
≤CΓ| exp

(
(z − 1)(n− 1)−2θ3

)
− 1| ≤ CΓεn|z − 1| exp (2εn),

where, to get the last relation, we have made use of the inequalities |eδ − 1| ≤ |δ|e|δ|
and |θ3| ≤ 5/4. Combining this with (13) it follows that ∆1 ≤ CΓεne2εn . Hence we
obtain from (12) the inequality stated in Theorem 1 for ∆. It remains to estimate CΓ.
Using Euler’s infinite product formula

1
Γ(z)

= zeγz
∞∏
n=1

((
1 +

z

n

)
e−z/n

)
(14)

and the representation γ = α
∑
n≥1 n

−2, α = 6γπ−2, we have, after term-wise esti-
mating the product, the bound

C2
Γ ≤ Γ(1− α) exp(γ/α− αζ(3)− γα),

where ζ is the Riemann zeta function, as before. A simple numerical calculation shows
that CΓ ≤ 1.9615. Note that this is a rather sharp estimate, for |1/Γ(i)| > 1.9173.
Hence Theorem 5 is proved.

Remark. In conclusion of this section, note that

gn(z) =
1
zn!

[z]n =
1
n!

n∑
k=1

|s(n, k)|zk−1,

where [x]n is the rising factorial polynomial, and s(n, k) are Stirling numbers of the
first kind, so that

P(Sn = k) =
1
n!
|s(n, k + 1)|. (15)

The numbers s(n, k) are of great importance in many fields of mathematics: say,
according to Jordan (1965), ”they should be placed in the centre of the Calculus of
Finite Differences” (see also Charalambides, Singh (1988) and Butzer et al. (1989)).
One more interpretation of |s(n, k)| = (−1)n+ks(n, k) is the number of permutations
of n elements, which have exactly k cycles. It is known (see e.g. Jordan (1965)) that,
for a fixed k,

|s(n, k + 1)| ∼ (n− 1)!(logn+ γ)k/k! as n→∞

(cf. also Kemp (1984)). The estimates for the Poisson approximation (4) together
with (15) imply that

|s(n, k + 1)| = n!
(
e−νnνkn/k! +O(log−1 n)

)
as n→∞,

uniformly in k ≥ 0. Our approximation shows that

|s(n, k + 1)| = n!(mn(k) + δn(k)),
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where mn(k) = Mn(k)−Mn(k− 0) is the mass of the measure Mn in the point k ≥ 0,
and, using instead of (13) just the inversion formula for generating functions, we get
the estimate

|δn(k)| ≤ 5
2(n− 1)2

+
1

16n(n+ 1)
≤ 2.6

(n− 1)2
.

3. A general case

In this section we shall assume that the indicators I1, . . . , In are independent with
success probabilitites fulfilling the condition (5)

∞∑
k=2

pk =∞,
∞∑
k=2

p2
k <∞.

Let again νn =
∑n
k=2 pk = E(Sn). As was pointed out in Deheuvels and Pfeifer

(1988), assumption (5) is sufficient for Poisson approximation of Gn by Πνn at a rate
of

sup
x
|Gn(x)−Πνn(x)| = 1

2
√

2πe

∑n
k=2 p

2
k∑n

k=2 pk
+O

(( n∑
k=2

pk

)−3/2
)

(16)

which means that the exact approximation rate is of order O

((∑n
k=2 pk

)−1
)

=

O(1/νn). We show here that this rate can be lowered to O
(∑∞

k=n+1 p
2
k

/∑n
k=2 pk

)
by convolution of Πνn with the fixed (i.e. independent of n) signed measure with
distribution function U having

u(z) =
∞∏
k=2

(
1+pk(z−1)

)
e−pk(z−1) = 1− 1

2

∞∑
k=2

p2
k(z−1)2 +

∞∑
k=3

ak(−1)k(z−1)k (17)

as generating function where the ak are recursively defined as

ak = −1
k

(
τk +

k−2∑
i=2

aiτk−i

)
, k ≥ 2; a2 = −τ2

2
(18)

where

τi =
∞∑
k=2

pik, i ≥ 2. (19)

This can be seen from e.g. Deheuvels, Pfeifer and Puri (1989), relation (2.11) there,
or Shorgin (1977), Lemma 5. Note that by (5), the product converges with

u(z) ≤
∞∏
k=2

epk(z−1)e−pk(z−1) = 1.
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The relationship between U and L above (see (7)) is as follows. In case of pk =
1/k, k = 2, . . . , n, we have

u(z) =
∞∏
k=2

(
1 +

z − 1
k

)
e−(z−1)/k =

1
Γ(1 + z)

e(1−γ)(z−1) (20),

in view of Euler’s product formula (14), while the generating function of L is just
1/Γ(1 + z). W.r.t. relation (8), this means

u(z) =
1

Γ(1 + z)
e(1−γ)(z−1) = (1 + z) exp

(γ − 1)−
∑
k≥2

(−1)k

k
(ζ(k)− 1)zk

 , (21)

which indicates that the linear term in the exponent of (8) is just replaced by a
constant term instead.

Theorem 2. For n > 1,

∆′ = sup
x
|Gn(x)−Πνn ∗ U(x)| = 1

2
√

2πe

∑∞
k=n+1 p

2
k∑n

k=2 pk
+ o

( ∞∑
k=n+1

p2
k

/ n∑
k=2

pk

)
.

Proof. The easiest way to prove Theorem 2 is to apply the operator semigroup
technique as in Deheuvels and Pfeifer (1988) or Deheuvels, Pfeifer and Puri (1989).
It follows from there that the distance ∆′ can be represented as a norm

∆′ =
∥∥∥( n∏

k=2

(I + pkA)− T ◦ exp(νnA)
)
g
∥∥∥ (22)

where I is the identity operator and A is the difference operator (infinitesimal genera-
tor) acting on the sequence space `∞ endowed with the usual sup–norm

∥∥ · ∥∥, defined
as

Af(n) =
{
f(n− 1)− f(n), n ≥ 1
−f(0), n = 0, (23)

for any sequence f =
(
f(0), f(1), . . . ,

)
∈ `∞, and ◦ means operator product (corre-

sponding to convolution; {etA | t ≥ 0} is the Poisson convolution semigroup generated
by A). g is the particular sequence g = (1, 1, 1, . . .) ∈ `∞. T denotes the operator

T =
∞∏
k=2

(I + pkA)e−pkA, (24)

which corresponds to the signed measure with distribution function U . Let Tm denote
the operator

Tm =
m∏
k=2

(I + pkA)e−pkA, m ≥ 1. (25)

Then

∆′ =
∥∥∥( n∏

k=2

(I + pkA)− T ◦ exp(νnA)
)
g
∥∥∥ =

∥∥∥(T − Tn)eνnAg∥∥∥
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where T − Tn has a series expansion

T − Tn = −1
2

∞∑
k=n+1

p2
kA

2 +
∞∑
m=3

(am − a′m)(−A)m (26)

where the am are as above (see relations (18) and (19)), and the a′m are defined
similarly as

a′m = − 1
m

(
1 +

m−2∑
i=2

a′iτ
′
m−i

)
, m ≥ 2; a′2 = −τ

′
2

2
(27)

where

τ ′i =
n∑
k=2

pik, i ≥ 2. (28)

So the a′m are just the finite counterparts of am, approximating am for n → ∞
pointwise. It follows that the leading term in the expansion of ∆′ is thus given by
1
2

∑∞
k=n+1 p

2
k

∥∥A2eνnAg
∥∥ with

∥∥A2eνnAg
∥∥ ≈ 1

νn
√

2πe

(see Deheuvels and Pfeifer (1988) or Deheuvels, Pfeifer and Puri (1989)). The remain-
der term estimation for am− a′m and thus for the estimation of the consecutive terms
in the expansion of T −Tn can be carried out correspondingly, giving the result stated
above.
Theorem 2 is proved.

Remark. The foregoing analysis might suggest that instead of the correcting signed
measure corresponding to U one could likewise use the first two terms in the ex-
pansion of T , which correspond to the signed measure with distribution function
W = E0 − 1/2

∑∞
k=2 p

2
kE2, resembling the distribution function Vn above. However,

an analoguous argument as above shows that we would then only obtain

∆′′ = sup
x
|Gn(x)−Πνn ∗W (x)| = O

(( ∞∑
k=2

pk

)−3/2
)

which is in general much worse than the r.h.s. of the estimate in Theorem 2. For
instance, in the i.i.d. record model of Section 1, Theorem 2 gives the expansion

∆′ =
0.1995
n log n

+ o
(

(n log n)−1
)

(29)

for large n.
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