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Abstract 

Spatial distributional patterns of benthic meiofauna in the presence of certain macrofauna species are of 
particular interest in the ecological research of tidal flats. The promotion of benthic meiofauna by macrofauna 
species is frequently observed in field experiments and is in part responsible for the spatial patchiness of such 
distributions. It is the aim of this paper to show how Thomas and related cluster processes can be used for a 
stochastic modeling of such patterns when only aggregate abundances of individuals from quadrat counts are 
available. In particular, three data samples of Harpacticus obscurus (Crustacea: Copepoda) from sites where the 
polychaete Lanice conchilega is predominant are analyzed. 
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1. Introduction 

Promotion of benthic meiofauna by macro­
fauna species is a frequently observed phe­
nomenon in marine sediments and has been stud­
ied in various field experiments by several au­
thors (see Reise, 1985 and references therein). A 
series of such experiments was recently carried 
out within the research project "Okosystem­
forschung Niedersachsisches Wattenmeer" near 
the island of Spiekeroog in areas with a high 
spatial density of the polychaete species Lanice 
conchilega. Sediment samples were taken by 

• Corresponding author. Fax: (+ 49-40) 4123 4924. 

means of a multiple-tube corer consisting of 25 
square tubes each measuring 4 cm2 (thus covering 
an area of 100 cm2

). Within three samples a high 
frequency of the copepod Harpacticus obscurus 
was observed. Table 1 contains the observed 
abundances within each of the individual tubes 
(below: . sample average J.L and index-of-dispersion 
D (cf. Diggle, 1983, Chapter 2.5; Richter and 
Sondgerath, 1990, Chapter 3.1.5.1). 

The outstanding values of the index-of-disper­
sion obtained for each sample show clearly that 
an extremely high degree of spatial patchiness is 
present in each of the locations. Correspondingly, 
the index-of-dispersion test rejects the (null) hy­
pothesis of a random spatial distribution for this 
species at any reasonable level of significance, for 
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all sites. General biological explanations for this 
kind of aggregation have recently been investi­
gated by Ekschmitt (1993). In the context of ben­
thic fauna, Reise (1985, Chapter 11.2) discusses 
similar observations around the feeding pockets 
of the lugworm Arenicola marina (involving ne­
matodes and further meiofauna species), among 
others. 

For the purpose of mathematical modeling, 
the use of Thomas and related processes seems 
to be an appropriate tool here (see Diggle, 1981, 
p. 54; Richter and Sondgerath, 1990, p. 65ff; 
Stoyan and Stoyan, 1992, p. 337; Pfeifer et aI., 
1992). Recall that a Thomas process is a two­
phase stochastic point process where the so-called 
parent points are generated according to a homo­
geneous spatial Poisson process with intensity 
Ap> 0, say, and the so-called daughter points 
according to non-homogeneous spatial Poisson 
processes clustering around each of the parent 
points with intensity AD> 0, say. The spatial dis­
tribution of individual daughter points is assumed 
to be bivariate radially symmetric normal with 
variance a 2 > ° for each component. 

In the situation above the parent process cor­
responds to the locations of Lanice conchilega, 
while the daughter processes correspond to the 
locations of Harpacticus obscurus. 

The main difficulty here is of course the fact 
that due to the sampling device the locations of 
the daughter individuals are not precisely known. 
Thus neither the shape nor the number of clus­
ters can be seen immediately from the data. 
Therefore a reliable statistical analysis is very 
cumbersome unless more specific tools are devel-

Table 1 

oped for the particular situation under considera­
tion. This is the aim of the subsequent section. 

2. The statistical approach 

Unfortunately there is only a very limited 
number of papers dealing with the statistical 
analysis of quadrat count data for Thomas-like 
processes; see, e.g., Pielou (1957) or Gleeson and 
Douglas (1975). Both papers essentially use the 
method of empty quadrats for estimating the in­
tensity of the underlying Poisson parent process; 
a procedure which is usually extremely biased. 
The authors thus come to the conclusion that the 
method is not appropriate in many cases, espe­
cially when the daughter process has a larger 
variability so that points are spreading out in 
quadrats which were originally free of parent 
points. Moreover, the method is not applicable at 
all if there are no empty quadrats, as is, e.g., the 
case of the data from site 18. 

In this paper we propose to proceed in two 
steps: Firstly, to estimate the number L of 
quadrats free of parent individuals by comparing 
the number of daughter individuals for each 
quadrat with a suitable threshold S by 

i = number quadrats with at most S daughter 

individuals; ( 1) 

secondly, to estimate the intensity A p of the par­
ent process by 

(2) 

Observed abundances of Harpacticus obscurus in areas of high density of Lanice conchilega, near Spiekeroog (May 1992) 

Site 6 Site 8 Site 18 

95 3 0 42 165 22 94 68 245 142 326 52 293 
1 1 1 4 2 11 82 111 97 153 222 368 84 18 67 
0 5 8 81 24 0 0 24 13 15 239 25 477 213 204 

11 1 6 71 116 31 1 46 22 11 18 570 183 494 47 
5 116 2 10 2 0 5 8 6 238 119 126 591 20 

}.L = 24.28 }.L = 39.52 }.L = 215.24 
D = 1464.21 D = 1490.13 D = 3377.47 
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where n is the total number of quadrats and 
meA) is the total area covered by the sampling 
device; and thirdly, to estimate the intensity AD 
of the daughter Poisson process by 

A N 
AD = ~' 

Ap 
(3) 

where N is the total number of daughter individ­
uals. In the sequel we call quadrats with less than 
S daughter points weakly occupied. Such quadrats 
are considered to be free of parent points with 
high probability, replacing the notion of "empty 
quadrats" in a suitable way for estimation pur­
poses. 

The motivation for Eqs. 2 and 3 is as follows. 
In the Poisson case, the probability Po of a 
quadrat to contain no parent individual is given 
by 

Po ~ e-'o ~ exp ( - it p m~A) ), 

where AO = Apm(A)ln is the expected number of 
points in an area of size meA) In, i.e. the size of 
each of the n sampling quadrats. On the other 
hand, Lin represents the empirical fraction of 
empty quadrats which by the law of large num­
bers is approximately equal to Po, if the total 
number of quadrats, n, is large enough. Hence 
L In is a statistical estimate for Po; solving the 
resulting equation 

A (Am(A») Lin = exp - Ap -
n
-

for Ap gives Eq. 2 (see also Stoyan et aI., 1989, 
Chapter 2.7, p. 54). Further, for sufficiently large 
observation area sizes meA), by the indepen­
dence of the number of daughter and parent 
points, we have for the expectation E(N) of the 
total number N of daughter individuals 

This is due to the fact that A pA D corresponds to 
the theoretical intensity of the point process con­
sisting of all daughter points in the plane, per 
unit area. Replacing A p by its estimate A p and 
solving for AD gives Eq. 3. 
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Fig. 1. Graph of a weakly occupied quadrat, surrounded by 
clusters of daughter points. Here + denotes the position of 
parent points while • corresponds to the location of daughter 
points. 

In order to choose an appropriate threshold S 
we suggest to use 

N 
S=---

3( n -I) 

where again N is the total number of daughter 
individuals and I denotes the number of quadrats 
being free of daughter points. This recommenda­
tion is based on the following heuristic argu­
ments. 

Considering first a parent point being "close" 
to the edge of a quadrat which was originally 
empty, we see that about one half of the daughter 
points is spreading out into this quadrat, if the 
projection of the point to the quadrat boundary is 
roughly in the middle between the two adjacent 
vertices (Fig. 1). If the point is located "close" to 
a vertex itself, only about one quarter of daughter 
points is spreading out into the quadrat. Due to 
the homogeneity of the parent Poisson process, 
we see that, averaging over the length of an edge 
between vertices, about one third of the daughter 
points spreads out into the quadrat, if the center­
ing parent point is "close" to the boundary of the 
quadrat. On the other hand, n - I is the total 
number of quadrats being occupied by daughter 
points; on average we thus have roughly N I(n - l) 
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daughter points in such a quadrat. This explains 
Eq. 4. Note that there is no simple closed formula 
available for the exact average number of daugh­
ter points spreading out into a weakly occupied 
quadrat. 

3. Adaptive bias reduction and simulations 

Although the threshold approach provides a 
certain bias reduction over the methods proposed 
in Pielou (1957) or Gleeson and Douglas (1975), 
the resulting estimates in Eqs. 2 and 3 are still 
not completely satisfactory. We therefore suggest 
to process the obtained estimates through the 
following adaptive bias reduction procedure: 

Table 2 
Simulation results from bias reduction 

Simulation No. Parameter Site 6 

input Ap 11.15 

input AD 54.40 
D 1464.21 

J.L 24.28 

Results average Ap 14.14 
st. deviation 4.87 

average AD 43.30 
st. deviation 9.42 
average D 102S.70 
st. deviation 298.83 

f 0.7885 

2 input Ap 8.79 

input AD 69.0S 

Results average Ap 11.64 
st. deviation 4.59 

average AD 53.11 
st. deviation 12.66 
average D 1298.86 
st. deviation 385.89 

f 0.9579 

3 input Ap 8.42 

input AD 72.09 

Results average Ap 11.04 
st. deviation 4.39 

average AD 54.92 
st. deviation 12.93 
average D 1339.28 
st. deviation 390.27 

1. simulate a certain number of spatial patterns 
with input parameters given by the estimates 
of Eqs. 2 and 3 from the original data; 

2. compare the mean values of the corresponding 
parameter estimates obtained by simulation 
with the input parameters and adjust by ap­
propriate scaling; 

3. repeat the procedure until a sufficient result is 
obtained. 
Table 2 contains the result of a three-fold bias 

reduction from 1000 simulations each, with re­
spect to the parent intensity Ap , whereby the 
total area size of 100 cm2 was for practical rea­
sons set to 1 [unit]. The s,tandard deviation a for 
the bivariate normal distribution was chosen to 
be 2.33 mm; this is on the one hand a reasonable 

Site 8 Site 18 

18.34 31.82 

53.84 169.08 
1490.13 3377.47 

39.S2 21S.24 

22.66 36.S6 
6.79 9.49 

43.33 145.S2 
9.04 30.99 

1010.45 3086.76 
290.79 878.43 

0.8093 0.8703 

14.84 27.69 

66.57 194.30 

18.80 32.82 
6.00 8.45 

52.25 163.46 
11.04 33.29 

1246.32 3576.84 
362.46 1034.43 

0.9755 0.9695 

14.47 26.85 

68.28 200.41 

18.32 31.77 
5.74 8.36 

53.94 168.26 
11.68 34.84 

1286.62 3725.20 
378.63 lOS8.18 



D. Pfeifer et al. / Ecological Modelling 87 (1996) 285-294 289 

9 19 9 2 67 
:·:#R-

'. 

t:~.' . ,:;,.?,~.:.~!~ 
.. 
.' 129 89 29 9 9 

.':::'~?. 

... .. · .. <:f{'( 2 3 77 9 64 
'~f, .. ~.~: 

. ' , ~::< . 9 15 48 9 9 
'.' 

\;~.::J:~: :: . 
9 75 9 9 9 

Fig. 2. Simulation for site 6. Ap = 11.15; AD = 54.67; D = 1350.16. Position of parent points, + ; position of daughter points, •. 

magnitude from biological considerations, on the 
other hand this choice provides dispersion indices 
which are in the order of magnitude of the corre­
sponding dispersion indices for the original data 
set. The reduction factor f is the ratio between 
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the original input value for A p estimated from the 
data set, and the resulting empirical average of 
simulated estimates for Ap. With each repetition 
of the procedure, the new input value for A p was 
obtained from the preceding one by multiplica-

229 53 113 1 117 

47 85 137 1 9 

95 14 45 64 

47 118 25 

18 

Fig. 3. Simulation for site 8. A p = 18.34; AD = 66.54; D = 1698.43. Position of parent points, + ; position of daughter points, •. 



290 D. Pfeifer et al. / Ecological Modelling 87 (1996) 285-294 

Table 3 
Estimates from bias reduction 

Parameter Site 6 

Ap 8.42 

72.09 

Site 8 

14.47 

68.28 

Site 18 

26.85 

200.41 

tion with the actual value of j, while the input 
value for the daughter intensity was obtained via 
Eq. 3, with N being counted from the original 
data set. 

Additionally, also empirical averages of the 
simulated index-of-dispersion and of the simu­
lated estimates for AD are given in Table 2, 
together with their empirical standard deviations. 

A comparison of the underlined values in Table 
2 shows that the third simulation already provides 
a very good coincidence between the original 
input parameters and simulated estimates, so that 
(cf. the bold values above) the values in Table 3 
can be regarded as appropriate estimates for A p 

and AD' Note that the empirical standard devia­
tions for A p cannot essentially be improved by 
any other method since the number of parent 
points in the whole area A is Poisson-distributed 
with mean Apm(A) = Ap here, and standard de-
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viation p:;; thus, with the estimates from the 

original data set, {f; = 3.33, 4.28 and 5.64, re­
spectively, come close to the theoretically mini­
mal standard deviation. 

4. Visualization of simulation results 

The above three figures (Fig. 2, Fig. 3 and 4) 
show visualizations of simulations for Thomas 
processes with the input parameters from Table 
3. On the left hand side, the sampling quadrats 
are shown, together with parent points (+) and 
daughter points (.). On the right hand side, the 
corresponding quadrat counts for daughter points 
are given. In the legend of each figure, the result­
ing estimations for A p and AD from the particular 
picture are shown, as well as the corresponding 
index -of-dispersion D. 

5. Adjustments of the model for benthic meio­
fauna 

A closer look to the results obtained above 
shows that the model reproduces the structure of 

392 457 9 55 292 

288 199 8 Hil 293 

159 119 1 41 31 

526 262 215 431 11 

382 264 85 2 182 

Fig. 4. Simulation for site 18. Ap = 28.85; AD = 200.40; D = 3198.11. Position of parent points, +; position of daughter points, •. 
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the given data quite well (in a statistical sense) 
except for the fact that seemingly too many empty 
quadrats occur in the simulations. This is most 
probably due to the fact that individuals of cope­
poda species are not exclusively clustering around 
meiofauna funnels but are also moving in the 
sediment. If a one-sided standard Wilcoxon rank 
sum test is performed with the original data set 
and the count results from the above three simu­
lations to test whether the original data come 
from a stochastically larger distribution compared 
with the model under consideration, we obtain 
the following result (Table 4). 

We see that at a significance level of 80%, the 
null hypothesis of equal quadrat count distribu­
tions is rejected, at least for sites 6 and 18. The 

Table 5 
Modified simulation results from bias reduction 

Simulation No. Parameter Site 6 

input Ap 11.15 
--

input AD 51.68 
D 1464.21 

J.L 24.28 

Results average Ap 15.49 
s1. deviation 5.21 

average AD 36.79 
s1. deviation 8.27 
average D 926.87 
s1. deviation 274.16 

f 0.7198 

2 input Ap 8.02 

input AD 71.85 

Results average Ap 11.97 
s1. deviation 4.40 

average AD 49.02 
s1. de-viation 12.24 
average D 1287.58 
s1. deviation 392.12 

f 0.9315 

3 input Ap 7.47 

input AD 77.19 

Results average Ap 11.27 

s1. deviation 4.15 

average AD 50.95 
s1. deviation 13.10 
average D 1337.67 
s1. deviation 377.96 

Table 4 
Wilcoxon test for the standard Thomas process 

Location Site 6 Site 8 Site 18 

Rank sum 693 633 682 
Approx. critical value, a = 0.05 723 723 723 
Approx. critical value, a = 0.10 704 704 704 
Approx. critical value, a = 0.20 681 681 681 

approximate critical values were computed using 
the normal approximation for the rank sum, hav­
ing mean 637.5 and variance 2656.25 under the 
null hypothesis (see e.g. Hartung et aI., 1993, p. 
514ft). Note that the test procedure is applicable 
since by the construction principle of Thomas's 
processes, given the parent points, the pattern of 

Site 8 Site 18 

18.34 31.82 

51.15 160.63 
1490.13 3377.47 

39.52 215.24 

24.40 37.89 
7.01 9.40 

38.33 134.39 
7.72 27.36 

908.25 2859.13 
263.88 801.62 

0.7516 0.8398 

13.78 26.72 

68.09 191.30 

19.28 33.32 
5.60 8.61 

48.96 153.55 
10.03 329.92 

1216.87 3371.52 
362.01 971.87 

0.9512 0.9550 

13.11 25.52 

71.59 200.33 

18.33 32.36 
5.56 8.30 

50.69 157.83 
10.80 31.12 

1263.11 3471.29 
367.33 1010.16 
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Fig. 5. Modified simulation for site 6. A p = 11.15; AD = 60.70; D = 1514.73. Position of noise points, +; position of daughter points, 
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daughter points forms an inhomogeneous Poisson 
process, hence in each simulation, the individual 
quadrat counts are (conditionally) independent. 
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A seemingly better description of the situation 
is obtained if we assume that a fixed proportion 
p of the individuals is scattered randomly in the 

2 2 3 36 46 

41 Be 6 5 

4 4 119 45 36 

94 113 169 27 47 

94 1 4 1 

Fig. 6. Modified simulation for site 8. Ap = 18.34; AD = 51.20; D = 1313.70. Position of noise points, ~; position of daughter points, 

•• 
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sediment. This means that the Thomas process is 
superimposed by an independent homogeneous 
Poisson noise process of low intensity As = pAtOl' 
where 

Atot = ApAD + As (5) 

denotes the overall intensity of the process (::::; 
mean number of individuals per unit square, up 
to edge effects). From this formula we obtain 
ApAD = (1 - p)AtOl' so that the estimation for AD 
should be based on the quantity (1 - p)N instead 
of N (cf. Eq. 3): 

(l-p)N " 
AD,mod= " =(l-p)AD (6) 

Ap 

Likewise, the threshold value S should be in­
creased to 

(7) 

Similarly as above, an adaptive bias reduction is 
possible. Table 5 contains computations analo­
gous to those in Table 2. The resulting parameter 
estimates were again used for a visualization of 
three simulations with the above modifications 
(Fig. 5, Fig. 6 and 7); for the Harpacticus obscurus 
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Table 6 
Wilcoxon test for the modified Thomas process 

Location Site 6 Site 8 Site 18 

Rank sum 643 629 613 
Approx. critical value, a = 0.05 723 723 723 
Approx. critical value, a = 0.10 704 704 704 
Approx. critical value, a = 0.20 681 681 681 

data, p = 0.05 turned out to be a good choice for 
the noise process. 

The Wilcoxon rank sum test applied to the 
latter simulated count data here provides the 
following results (Table 6). In this case, the hy­
pothesis of equal quadrat count distributions can­
not be rejected at significance levels of 80% or 
higher. 

6. Conclusions 

The above simulation studies show that the 
modified Thomas process model is in very good 
coincidence with the data sets of sites 6, 8, and 
18. To find evidence for the conjecture that the 

246 221 212 199 294 

328 597 475 244 446 

66 41 48 36 218 

148 24 191 835 419 

341 457 78 126 188 

Fig. 7. Modified simulation for site 18. Ap = 35.67; AD = 169.85; D = 3406.58. Position of noise points, +; position of daughter 
points, •. 
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Table 7 
Table of estimated and true densities for locations 6, 8 and 18 

Location Site 6 

7.47 
9.00 

Site 8 

13.11 
15.00 

Site 18 

25.52 
24.00 

individuals of the copepod species Harpacticus 
obscurus are spatially clustering around Lanice 
conchilega funnels (at least in the observed area) 
we have to compare the estimated intensities A p 

for the parent process with density estimates d 
for Lanice conchilega funnels. Such data were 
fortunately independently obtained within the 
same regions of observation. Table 7 shows the 
six corresponding figures, with d denoting the 
number of funnels per 100 cm2 each. 

A comparison of the corresponding values in­
dicates very clearly that the conjecture of the 
promotion of meiofauna by benthic macrofauna 
can be assured locally for the above-mentioned 
species. 

Programs for the estimation of parameters, 
simulation and adaptive bias reduction for 
quadrat counts in a Thomas process of the above 
type are available upon request from the authors. 
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