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Summary: In quantitative ecology the classical index-of-dispersion is widely 
used for testing the hypothesis of spatial randomness. However, spatial aggre­
gation of individuals is often observed in field experiments, so that the test will 
frequently reject the hypothesis without indicating any alternatives. In this paper 
we consider a modified index-of-dispersion test which allows for testing the hy­
pothesis of a spatial Poisson point process with intensity measure having a density 
>.(x) of the form 

n 

>.(x) = E ajh(x), x E IR? 
j=l 

with known non-negative regression functions h(x) and unknown non-negative 
parameters aj which are to be estimated by the observed data. This model in­
cludes the classical case for n = 1 and h (x) == 1. Further applications to testing 
local geographical influences on health data are also pointed out. 

1. Introduction 

In quantitative ecology the classical index-of-dispersion (normalized vari­
ance-to-mean ratio of quadrat counts) is widely used for testing the hypo­
thesis of spatial randomness (see e.g. Greig-Smith (1983), p. 61fI, or Diggle 
(1983), p. 23fI). One reason for this is the fact that the experimental estima­
tion of spatial distribution and abundance of animals living on small scales 
is usually faced with taking samples by means of physical devices (quadrat 
sampling; cf. ego Krebs (1985), p. 160fI). Due to individual aggregation ef­
fects, patchiness of the spatial distribution can be observed even on those 
scales: the following figure represents two examples of 5 X 5 multicorer sam­
ples of benthic fauna (Harpacticus obscurus) in the Wadden Sea, taken from 
Pfeifer, Schleier-Langer, and Baumer (1994). 

95 1 3 0 42 165 22 1 94 68 
1 1 1 4 2 11 82 111 97 153 
0 5 8 81 24 0 0 24 13 15 

11 1 6 71 116 31 1 46 22 11 
1 5 116 2 10 2 0 5 8 6 

Fig. 1 
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The aggregation effect observed in these samples can e.g. be explained by 
oxidation and fertilization of the surrounding sediment by lugworms (Areni­
cola marina) or the polychaete Lanice concbilega, attracting meiofauna in 
high numbers around their burrows and funnels (d. Reise (1985), p.126ff; 
Ekschmitt (1993) contains a more general discussion of aggregation effects). 
It is therefore clear that the hypothesis of a random spatial distribution of 
meio- and microfauna must in general be rejected, although the spatial dis­
persion of lugworms and polychaetes - as the "parent" point pattern - is in 
good coincidence with the Poisson process assumption (Pfeifer, Baumer and 
Albrecht (1993)). However, it might be that the spatial distributional pat­
tern of individuals within each cluster (represented by a parent polychaete) 
may possibly stem from a Poisson process itself and is hence "locally ran­
dom" . In this paper we therefore suggest a modification of the classical 
index-of-dispersion test which allows for testing the hypothesis of a spatial 
Poisson point process with intensity measure possessing a density >.(x) of 
the form 

n 

>.(x) = L ajh(x), x E IR? (1) 
j=l 

with known non-negative regression functions h(x) and unknown non­
negative parameters aj. As usual in linear statistical models, these param­
eters are to be estimated by the observed data via suitable least-squares­
methods. This model includes the classical case for n = 1 and ft(x) == l. 
(Note that this procedure is not restricted to the two-dimensional Euclidean 
space, but is generally applicable in any dimension.) 

2. The Model 

Consider a spatial (in general non-homogeneous) Poisson point process e 
with an intensity ( = Lebesgue-density for its intensity measure) of type (1). 
Suppose further that observations Zl,' .. ,Zm are taken with m > n, repre­
senting aggregate point counts within pairwise disjoint subsets B1 , • •. , Bm 
of IR?, i.e. 

Zi=e(Bd, i=l, ... ,m. (2) 

Then 

JLi := E(Zi) = ki >.(x) dx = ~ aj ki h(x) dx = (Wa)i' i = 1, ... , m (3) 

where W is the weight matrix W = (Wij) with 

Wij = f h(x) dx, i = 1, ... , m, j = 1, ... , n lBi (4) 

and a is the column vector of parameters aj. By the central limit theo­
rem, if the JLi are sufficiently large, the column vector Z consisting of the 
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components Zi is approximately normally distributed as N(Wa,~) with a 
variance-covariance matrix ~ = ~(Wa) of diagonal form where 

{ 
bi, if i = j 

~(b)ij = 
0, otherwise, 

1 ~ i,j ~ m 

for any column vector b= (bl, . .. ,bmyr E ffim. Hence 

a = (Wtrwt1w trz, {t = Wa 

(5) 

(6) 

are appropriate least-squares-estimates for the parameter vectors a and Il, 
resp., and the generalized index-of-dispersion D is just the sum of squares 
of residuals: 

D = t (Zi -=- {ti)2 = (Z - Wa)trt-1(z - Wa) 
i=1 Ili 

(7) 

where t = ~(M = ~(Wa) is the estimated diagonal matrix with entries 
{ti, i = 1, ... , m. Hence D is approximately X2-distributed with m - n 
degrees of freedom if W has full rank n and can thus be used as a test 
statistic for the null-hypothesis that the underlying point process is Poisson 
with an intensity of the form (1) (for technical details, see e.g. Fahrmeir and 
Hamerle (1984), p.84ff). 

However, the estimate a given in (6) is not optimal; a better estimate would 
be 

(8) 
if ~ was known. The problem here is that ~ is unknown, so that we should 
use an iterative procedure in order to get a better estimate of a, inserting 
consecutively the updated estimate t in (8): 

a~ := a, ak+1 = (wtr~(Wakt1Wt1wtr~(Wakt1Z, k E IN. (9) 

It is not always ensured that this iterative procedure will give meaningful 
results. However, as long as the estimates of the parameters aj remain non­
negative, it seems that in most cases the corresponding dispersion indices 
according to (7) will decrease and thus by boundedness converge to a lower 
limit which would then also imply convergence of the estimator sequence 
{an. [If by chance some of the akj become negative, they should be set 
to zero, omitting thus the corresponding regression functions in the basic 
setup.] 

3. Examples 

For simplicity we shall here assume m = 4, n = 2 and regression functions 
Ii of the following type: 

4 

fj(x) = LCjkIBk(X), x E ffi2, j = 1,2 (10) 
k=1 
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with disjoint sets Bk of unit area each (for example, a 2 X 2 square subdivided 
into 4 equally large subsquares), indicator functions IB defined by 

I () { 1, if x E B 
B X = 0, otherwise (11) 

for any Borel subset B ~ IR?, and coefficient matrix C = (Cjk) given by 

( 7 4 3 1) 
C= 1 2 5 9 . (12) 

If we think of the Bk forming a 2 X 2 gridded square, these coefficients could 
also be thought of being arranged in matrix form: 

(13) 

Poisson point processes with intensities Jl and 12, resp. would hence place 
the majority of points in the north-west and the south-east corner of the 
square, resp. By our assumptions, it follows that the weight matrix W 
coincides with the coefficient matrix Ctr since all B j have equal area of unit 
measure. By (6), we obtain 

and hence 

wtrw _ (75 39) 
- 39 111 

(WtrW)-lwtr = _1_ (123 61 23 -40) (14) 
1134 -33 -1 43 106 

Suppose we have obtained the sample Z = (41 36 57 95)tr from quadrat 
counts, or, in matrix form (corresponding to the gridded square above): 

(15) 

Then (14) yields the estimate 

it = (2375/567 5566/567) = (4.188 9.816) (16) 

with an index-of-dispersion of 

D = 0.508. (17) 

Iteration of the procedure gives the following table for ak: 

k 1 2 3 4 

a* k (4.188 9.816) (4.290 9.684) (4.287 9.687) (4.287 9.687) 

D 0.508 0.488 0.488 0.488 

Fig. 2 
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A stabilisation of the recursive estimates of a is visible here already for values 
of k smaller than 5; the corresponding x2-test would further not reject the 
null-hypothesis at any reasonable level of significance while the ordinary 
index-of-dispersion gives a value of 233.706 which is far beyond the 0.999-
quantile of the x~-distribution. 

For the sample Z = (75 71 79 68) or, in matrix form, 

[ 75 71] 
Z ~ 79 68 (18) 

the situation is different: here (14) gives the initial estimate 

a = (12653/1134 8059/1134) = (11.157 7.106) (19) 

with D = 5.856 and iterations 

k 1 2 3 4 

a* k (11.175 7.106) (11.496 7.091) (11.510 7.079) (11.511 7.078) 

D 5.856 5.6363 5.6346 5.6344 

Fig. 3 

such that the x2-test would reject the null-hypothesis at a significance level 
of 0.10 with a critical value of 4.61 (from the x~-distribution). Note that the 
ordinary index-of-dispersion is 5.866 here which is below the 0.90-quantile 
of the x~-distribution, hence the hypothesis of a purely random spatial dis­
tribution would not be rejected at this level. 

An application of this method for instance to benthos data seems reasonable 
if clustering of meio- and microfauna is caused by several superposed parent 
macrofauna patterns with different intensities of species attraction. For such 
a kind of analysis, it is therefore necessary to register macrofauna data from 
the same samples as well. 

Distributional patterns as in Fig. 1 are in good coincidence with simulated 
patterns from Thomas-processes with radially symmetric bivariate normal 
distributions for the daughter points (see e.g. Diggle (1983), p. 54ff.). Due to 
the possibly quadrat-overlapping variability of such a normal distribution, 
quadrats should, however, be grouped again before further investigation. 
For example, the left hand sample in Fig. 1 could be grouped as follows: 

95 1 3 

1 1 1 

0 5 8 

11 1 6 

1 5 116 

0 

4 

81 

71 

2 

42 

2 

24 

116 

10 

or, in matrix form : [ 115 153] 
140 199 (20) 
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A closer look at several of the obtained benthos data sets suggests that 
clustering of meio- and microfauna occurs typically around the high peaks 
within the quadrats, hence the following assumptions could be justified: 

(21) 

Here C 1 corresponds to the local intensities for the parent point pattern 
of polychaetes attracting meiofauna [not actually counted in this sample], 
while C 2 corresponds to a pure background noise component of homogeneous 
Poisson type per quadrat. The method described above gives here 

k 1 2 3 4 

a* k (27.316 0.223) (27.024 0.498) (27.033 0.491) (27.022 0.488) 

D 1.309 1.290 1.290 1.290 

Fig. 4 

which means that the average cluster size (within a quadrat) is about 27 
individuals with a superimposed Poisson noise of about one individual per 
two quadrats on average. The modified index-of-dispersion test would not 
reject the null-hypothesis at any reasonable level here, while the ordinary 
index-of-dispersion for these four data points gives a value of 24.53. 

A similar procedure for the right hand sample in Fig. 1 yields: 

165 22 1 

11 82 111 

0 0 24 

31 1 46 

2 0 5 

Choosing 

we obtain 

k 1 

94 68 

97 153 

13 15 or, in matrix form: 

22 11 

8 6 

C - [12 13] 
1 - 3 2 

2 3 

[ 392 412] 
109 75 

4 

(22) 

(23) 

a* k (31.393 1.857) (31.420 1.815) (31.420 1.815) (31.420 1.815) 

D 0.122 0.120 0.120 0.120 

Fig. 5 
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The average cluster size (within a quadrat) is slightly larger as before, while 
the Poisson background noise here is about 2 individuals per quadrat. The 
modified index-of-dispersion test would again not reject the null hypothesis, 
while the simple index-of-dispersion gives a value of 392.21. 

4. Further Applications 

A particular case of interest is n = 1, i.e. there is only one parent macro­
fauna type causing patchiness in the spatial distribution. In this case, the 
calculations simplify to a great extent: let f denote the regression density 
and a the parameter to be estimated. The design matrix W then reduces 
to a column vector W = (WI, ... ,wm)tr, with Wi = fB.f(x)dx, hence by 
(6), 

(24) 

and the index-of-dispersion is given by 

(25) 

Note that since here a is one-dimensional only, there is no difference between 
the estimate a and the estimate a* according to (8). 

Another more natural application of the latter model to geographic health 
data was incorporated into the CARLOS-project recently (Cancer Registry 
Lower Saxony; see Appelrath et al. (1993)). The establishment of a country 
cancer registry, based on a homogeneous, area-wide, population-based re­
gistration of cancer cases, is pushed by the social ministry of Lower Saxony 
(FRG) since 1992. CARLOS is the respective project for the Weser-Ems 
region, providing also statistical tests besides regional information and the 
calculation of epidemiological indices. Questions whether for instance the 
presence of nuclear power plants rises the risk of childhood Leukaemia are 
usually discussed controversely (see Gardner (1993) for a recent U.K. study). 
The simple index-of-dispersion test cannot directly be applied here due to 
the different population structures in the various geographic regions so that 
adjustments have to be made in advance (see Kafadar and Tukey (1993) 
for an alternative approach). For instance, the weights Wi could be chosen 
proportional to the local population densities ni, i = 1, ... , m, for the m 
local districts in the country. Another problem is that not all cancer cases 
are registered with the same registration probability Pi, i = 1, ... , m. This 
means that in the medical data actually a thinned (Poisson) process is ob­
served, so that the weights Wi should be chosen proportional to Pini. The 
problem of a reliable estimation of the Pi is, however, an unsolved problem 
until now, since it requires further considerations other than mere statistical 
investigations. 
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The multi-parameter regression approach as in (1) might likewise be fruitful 
for the analysis of cancer data, for instance, if it is reasonable to consider 
age classes or other personal or social factors. 

On the other hand, local influences on health data could be tested by this 
approach as well, by increasing the values of the regression functions over 
the corresponding areas. Experience with such kind of statistical procedures 
is presently in progress. 
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