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Summary: In this paper we show how established methods from the fields of point 
process theory, stochastic geometry, and geostatistics can be applied to analyze spatial 
data from marine ecosystems. In particular, examples and data sets from the research 
project "Okosystemforschung Niedersachsisches Wattenmeer" are presented. 

1. Introduction 

The use of statistical methods has a very good tradition in applied sciences such 
as medicine or biology, and seems to play a more and more important role also in 
related fields like ecology (d. Richter and Sondgerath (1990).) While the "classical" 
statistical theory is well-established and largely adapted to the particular problems 
arising here (d. Krebs (1985) or Begon, Harper, and Townsend (1990», more mo­
dem advances in stochastic modelling have seemingly not yet found their final way 
into the field. The recent papers of Rothschild (1992) and Pfeifer, Baumer, and 
Albrecht (1992) as well as the forementioned monograph by Richter and Sondgerath 
(1990) show, however, that applications of point process theory and stochastic geo­
metry may be fruitful to obtain a deeper insight into the highly complicated sto­
chastic structures which are the basis for the analysis of many of the spatial data 
obtained in biological or ecological field experiments (d. also Diggle (1983) and 
Cressie (1991». 

Besides these two disciplines, we want to show in this paper that also geostatistical 
aspects could well be included in an analysis of such data, especially in marine 
ecology (d. also the recent monograph by Haining (1990». 

2. Point patterns and processes: small-scale communities 

Among the many species which form typical communities in marine ecosystems 
there are several whose spatial distribution may by physical reasons supposed to 
be more or less uniform over certain areas. This assumption can be justified if 
e.g. the offspring is in larval form, being drifted by hydrodynamical forces and 
distributed "at random". Since the physical extension of the larger part of meio-­
and microfauna species is typically in the millimeter range or even less (e.g. the 
copepode species Harpacticus obscurus) we may neglect this aspect of statistical 
modelling, such that point process theory becomes an appropriate tool for the 
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description and analysis of distributional patterns created by such species. 
A first basic model is the so-called spatial Poisson process, denoted by e( . ). 
Finite versions of them are characterized by the following two properties (d E N 
denoting the dimension): 

i) For any measurable (i.e. Borel-)set A ~ Rd, the random variable e(A) is Poisson 
distributed with mean >'(A) E [0,00). 

ii) For any countable collection of disjoint measurable sets A, B, C, ... , the random 
variables e(A), e(B), e( C), .. . are independent. 

Here >.( . ) (also denoted as EO is a finite measure (called intensity measure) on 
the Borel u-field over Rd. A canonical representation of e is 

N N 

e(A) = LeXIo(A) = L lA(Xk) (1) 
k=l k=l 

where the random variables N and X I, X 2, X 3 , ••• are independent, N follows a 
Poisson distribution with mean E(N) = >.(Rd) = Ee(Rd), and Xl, X 2 , X 3 , ••• follow 
the distribution Q given by 

Ee(A) 
Q(A) = P(Xk E A) = Ee(Rd) (2) 

for all measurable sets A ~ Rd and kEN, provided Ee(Rd) > 0 (otherwise there are 
no points realized by the process). Here 18 denotes the indicator random variable 
of the event B, which shows that e(A) counts the number of points in the set A. 
If, in particular, the intensity measure Ee has the form 

Ee(A) = c· meA n X), (3) 

for some bounded measurable region X C Rd and c > 0, where m( . ) denotes the 
Lebesgue measure (i.e. area or volume in case d = 2 or d = 3, resp.), then e is called 
homogeneous Poisson process over X. In this case, the positions of points {Xn} are 
uniformly distributed over X since here 

Ee(A) 
Q(A) = P(Xk E A) = Ee(Rd) 

for all Borel sets A, provided m( X) > O. 

m(AnX) 
m(X) 

(4) 

In order to test the hypothesis of homogeneity it is sometimes convenient to use the 
index-of-dispersion test, especially if only spatially aggregated data are available. 
For this purpose, the region X has to be subdivided into n, say, disjoint observation 
windows At, ... ,An of equal size (i.e. m(Ak) = m(X)/n for all k). Under the 
assumption of homogeneity the random variables e(At}, ... , e(An) are independent 
and follow a Poisson distribution with mean (c/n)m(X), which is identical to their 
variance. Hence the distribution of the test statistic 

(5) 
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with 

is asymptotically independent of c and asymptotically X~-l' by the central limit 
theorem for Poisson distributed random variables. Dn is called normalized index­
of-dispersion. The following figure shows the positions of individuals of the poly­
chaeta species Arenicola marina in a sample of size 174, together with the corre­
sponding 6 x 6 abundance matrix of spatially aggregated data: 
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Fig. 1 
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aggregated data 

Dn = 29.59 

The corresponding lower and upper 10%-quantiles of the X~5-distribution here are 
XkO.l0 = 24.80, X~5;O.90 = 46.05, hence the test will not reject the homogeneity 
hypothesis at a significance level of a = 0.2 or less. (A similar result would be 
obtained with the data set of the centipede species Lithobius crassipes in Krebs 
(1985), Figure 10.2, p. 160.) 
The following two tables contain the aggregated data of the abundance of the 
copepode species Harpacticus obscurus, taken at two different sites (labeled sites 6 
and 8): 

95 1 3 0 42 165 22 1 94 68 
1 1 1 4 2 11 82 111 97 153 
0 5 8 81 24 0 0 24 13 15 
11 1 6 71 116 31 1 46 22 11 
1 5 116 2 10 2 0 5 8 6 

Fig. 2 
site 6 site 8 

Dn = 1464.20 Dn = 1490.14 

The index-of-dispersion test here clearly rejects the homogeneity hypothesis for 
both sites, at all reasonable significance levels a. In this particular case, alternative 
models for the spatial distribution of individuals should be taken into account. For 
a discussion of non-homogeneous Poisson processes and, more generally, cluster 
processes, we refer the reader to Richter and Sondgerath (1990), Stoyan, Kendall 
and Mecke (1989) or Pfeifer, Baumer and Albrecht (1992). Geostatistical aspects 
of such distributional patterns will be treated in more detail in Chapter 5 below. 
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3. Dynamic point patterns: revitalization & relative stability 

One of the most important factors for relative stability in marine ecosystems seems 
to be the enormous dynamics due to water and wind forces, which guarantee to a 
certain extent the revitalization potential of the system. It is therefore desirable to 
introduce a time-dependent dynamic component in stochastic point patterns of the 
above type, which enables a study of the long-time behaviour of (at least a part of) 
the entire system. In the recent paper of Pfeifer, Baumer, and Albrecht (1993) such 
an attempt is made by considering a family of Poisson point processes {et It 2: O} 
which allows for birth, death and movements of points over time. In particular, the 
counting process M t = et(Rd) of particles at time t > 0 forms a Markovian birth­
death process with time- and state-dependent birth and death rates. Depending 
on the choice of system parameters, extinction, explosion and stabilization of the 
system over time can be modelled. Simulation studies show that the revitalization 
of (artificially) depopulated areas in the wadden sea by e.g. the gastropode species 
Hydrobia ulvae can very well be described through such models. However, a general 
framework for dynamic point processes is not yet fully developed, such that only 
particular models are available at present (cf. also Chapter 5.5.5 in Stoyan, Kendall 
and Mecke (1989». 

4. A Boolean model: mussel banks 

Point processes can of course also serve as a basis for more complicated geometric 
structures, such as random sets. Boolean models are obtained just in this way: the 
points of a homogeneous Poisson process, say, are the centers of geometric objects 
such as discs or balls with fixed or random radius. The random sets 2, which are 
created in this manner, are suitable models for patchiness or spatial clustering, such 
as mussel bank structures. The picture below shows a part of a juvenile My til us 
edulis bank. 

Fig. 3 
mussel bank of Mytilus edulis 
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In applications one of the important parameters of the model is the so-called area 
or volume fraction p, i.e. the average area or volume per unit square or unit cube, 
resp., covered by the image. In the model outlined above it is given by 

{ 
1- exp ( - C1rE(R2», 

p = 1 - exp {-c. E(m(B))} = 
1- exp ( - ~c7rE(R3)), 

d=2 
(6) 

d=3 

where R is the random variable describing the (random) radius ofthe "typical" disc 
or ball B in the model. This quantity can also be interpreted as the probability 
that a point of the Poisson process hits the "average" disc or ball with radius E(R2) 
or E(R3 ), resp. In marine ecology, the knowledge of p for mussel banks is basic to 
estimate the biomass in the bank, for instance. For stationary and isotropic random 
sets (which means shift and rotation invariance of the distribution of c, as in the 
above Boolean model) there are simple and efficient estimators for p, for instance 

1 n 

p = - L lI.:s(x;) 
n ;=1 

(7) 

where {Xi} is a grid of n points in Rd , typically larger in extent than the given 
image. Thus p counts the corresponding number of grid points {x;} that hit the 
image. This estimator is unbiased; under appropriate conditions, its variance is of 
order O(l/n) for large n (cf. Stoyan, Kendall and Mecke (1989), Chapter 6.3). For 
the (complete) mussel bank above, the grid estimate gives values of p about 0.4 
which is in good coincidence with the value that was obtained by a deterministic 
technique measuring the covered area by exhaustion with "small" rectangles. 

5. Geostatistical models for spatial dependence: benthos data 

If we interpret the spatial data as being realizations of a random field {Z( z) I z E 
Rd}, then geostatistical approaches could be tried for the data analysis as well. 
Such techniques have gained increasing importance in environmental sciences over 
the years (see Haining (1990); in particular in connection with GIS's (Geographical 
Information Systems». For instance, for the Harpacticus data (Fig. 2 above), the 
assumption of a homogeneous spatial distribution is surely inappropriate, as can be 
seen even with the bare eye. Corresponding observations can be made throughout 
for a great deal of other benthic species; it seems that such species have a tendency 
to spatial aggregation in general (cf. also the recent Ph.D. Thesis by Ekschmitt 
(1993». A simple but nevertheless efficient way to model such spatial dependence 
structures is the assumption of a weakly stationary random field with constant mean 
J1. and variance 0'2 in each point z, such that information on the spatial dependence 
is given through the variogram function 

2-y(h) = V(Z(z) - Z(z + h» = 2(0'2 - C(h» = 2(C(O) - C(h)) (8) 

for vectors z,h E Rd. Here 

C(h) = Cov(Z(z), Z(z + h)) (9) 
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denotes the covariance function of the random field. If stationarity and isotropy 
can be assumed, C(h) depends only on the length Ilhll. The function ,0 is also 
called semi-variogram function. (Note that in the literature, variograms and semi­
variograms are sometimes identified, and that only in the case of normal distributi­
ons, this function uniquely determines the distribution of the random field {Z( Z )}.) 

The behaviour of the variogram or semi-variogram function in the neighbourhood 
of the origin determines the degree of "smootheness" of the random field. For 
variograms of Gaussian type, i.e. 

(h -t 0) (10) 

with some positive constant c there exist realizations of a random field with normal 
marginal distributions that have "smooth", i.e. differentiable pathsj in the case 

,(h) '" c ·lIhll (h -t 0) (11) 

the corresponding paths will be continuous, but non-differentiable. If ,(.) is not 
continuous in the origin (so-called nugget effect) then the paths of the random field 
will also not be continuous. Although such an effect cannot be discovered by finite 
sampling it is sometimes convenient to incorporate it into the model in order to de­
scribe micro-scale variation, which can be considered as being caused by some white 
noise process superposed to the underlying" continuous" random field (cf. also the 
discussion in Cressie (1991), p. 59). Another effect that is occasionally considered 
is the so-called hole effect, which produces some kind of periodic oscillations in the 
(semi-)variogram, corresponding to spatial correlations at fixed distances. 
In a geostatistical analysis, a first goal is to estimate the (semi-)variogram function 
from data taken at measurement points XI, .•. , Xn E Rd. The "classical" estimator 
here is 

1 ~. • 2 
i'(h) = 2m L....-{Z(Xij)-Z(Zij +h)} 

i=l 

(12) 

where Z(z) denotes the observed value of the random field at the point z E Rd, 
and Zij - Zij_l = h for all j (transsect sampling). In a second step, a curve fitting 
procedure is applied in order to estimate i'(.) also at intermediate distances. 
A second goal in the geostatistical analysis is a prediction of values of the random 
field at arbitrary points Z E Rd, on the basis of the complete set of data and 
the empirical (semi-)variogram observed. With the aid of this Krigingl procedure, 
contour maps of the underlying random field can be established. In block Kriging, 
the prediction of an averaged value 

Zv = m!V) i Z(z)dz (13) 

over some bounded and measurable region V C Rd is required. Simple Kriging, 
i.e. a pointwise prediction for Zo E Rd, is obtained from this by taking the limit 
m(V) -t 0 over regions V which contain Zoj then also Zv -t Z(xo) if the random 
field has continuous paths. Usual statistical requirements for a "good" prediction 
Zvare: 

1 named after the south-african statistician D.G. Krige 
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a) Linearity: 

b) Unbiasedness: 

c) Minimum Variance: 

Zv = E~=l AiZ(zi) with weights AI' ... ' An E Ri 

E[Zv] = E[Zv] = J1., i.e. E~=l Ai = Ii 

subject to E~=l Ai = 1. 

A solution of this Lagrangian problem can be obtained from the linear system 

K>"="'Y or (14) 

where 

(15) 

Here II is a Lagrangian multiplier, and the matrix bij] and the entries 'YV(Zi) are 
given by 

"Iij = "I(lIz i - zjll) 
[or variogram estimate.:yO for "1(.), resp.] 

'YV(Zi) = m!V) [ "I(lIz i - yll) dy 

(16) 

For simple Kriging, i.e. V = {zo}, the last terms reduce to 

(17) 

The minimum variance of c) above can be expressed in terms of >.. and "'Y as follows: 

(18) 

(For a more thorough discussion of the foundations of geostatistics, we refer the 
reader to the monographs of Cressie (1991), especially Chapter 3.2, and Joumel 
and Huijbregts (1978) or Haining (1990).) 
The following figures show variogram estimates for the Harpacticus data from Fig. 2 
(sites 6 and 8), as well as contour maps for the corresponding random fields with 
simple and block Kriging. In the latter case, blocks V of four neighboured quadrats 
each were considered. All calculations were performed with the program GEO­
EAS (Geostatistical Environmental Assessment Software). For the curve fitting 
procedure in the semi-variogram, a Gaussian model with nugget effect was used. 



347 

24811. seee. 

2M. 

16811 . 

12811. .... 
28118. 

4811. 

e.~--~--'---'----r---r---1 e.r---_r--~----r_--~--_r--~ 

e. 2. 3. 4. 5. 6. e. 1. 2. 3. 4. 5 . 6 . 

Fig. 4 
semi-variogram estimates for Harpacticus obscurus, sites 6 and 8 

Seemingly, in the semi-variogram for site 6 a hole-efl'ect can be detected. This is 
due to the fact that in opposite corners of the data set (north-west and south-east), 
high count values are observed. 

Simple Point t(ri9in9 
Site e. Hotpoc:LCv!i oblCut\.d 

Fig. 5 

5impfll Point Kti9irag 
SIt. a, Horpoc:licU3 Obsc'UfU'1 

contour maps for Harpacticus data: simple Kriging, sites 6 and 8 
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Ot(fil\ory Block Kri9in9 
~t. 6. HotpOC:tieut obscvtUl 

Fig. 6 

Ordinory BlooM. Krigin9 
Sit. 6. Horpoc:ticus obtc:ut\ll 

contour maps for Harpacticus data: ordinary Kriging, sites 6 and 8 

The last two figures show 3D-plots produced by a numerical interpolation of the 
Harpacticus data of the two sites (routine "inverse" of the program SYSTAT). A 
comparison with the corresponding contour plot above shows that the estimated 
distribution map is in good coincidence with this numerical data representation . 

Fig. 7 

. -­-' , -:' 

3D-plots for Harpacticus data, sites 6 and 8 
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As a final comment it should be pointed out that in the case of count data (like 
above) the application of geostatistical methods might mathematically not be fully 
justified since the observed values are realizations of discrete distributions. However, 
at least in some approximative way, the analysis makes sense in order to obtain 
information about spatial dependence structures. Such information is e.g. necessary 
in order to determine minimal areas for probe schemes in field experiments, for 
instance in order to reduce the costs for necessary laboratory analyses. In the 
above examples, the structure of the semi-variograms shows that a reduction to 
a four by four probe scheme could be recommended for site 6, while at site 8, a 
comparable reduction might be inappropriate. 
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