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Abstract: Motivated by time-dependent spatial random patterns occuring in marine or terrestrial 
ecosystems we investigate the limiting behaviour over time of certain Poisson point processes with 
possible movements of points according to a stochastic process. In particular, the possibilities of 
equilibrium, extinction or explosion of the system are discussed. 

1 Introduction 

A statistical analysis of random spatial patterns in marine or terrestrial ecosystems often 
requires the simultaneous consideration of time, space and migration. For instance, the spa­
tial distribution of birds or geese in a certain observation area is varying over time due to 
incoming or outgoing flights and movements on the ground; similarly, the spatial distribu­
tion of sand worms in the wadden sea (like arenicola. marina.) depends on death, birth and 
migration of adults and larvae. Frequently the distributional patterns in space caused by 
such species are very much Poisson-like; hence it seems reasonable to study time-dependent 
point processes of this type and their long-time behaviour. Although the use of mathe­
matical models in ecosystem theory is discussed controversely (see e.g. Wiegleb (1989) for 
similar problems in vegetation science) stochastic concepts in modelling of ecosystems are 
becoming more popular recently (see e.g. Richter and Sondgerath (1990)). A first simple 
model to study at least qualitative properties of systems as outlined above is a spatial birth­
death process with migration (e.g., Brownian motion) whose time-marginal distributions are 
all Poisson point processes. Similar processes have been studied before (see e.g. Tsiatefas 
(1982), Volkova (1984), Madras (1989)), however with emphasis on different aspects of the 
model. Our approach resembles the presentation of Cox and Isham (1980), chapter 6.5 (iii); 
the Poisson property of the process here allows for easy calculations of possible limiting 
distributions over time. In particular, equilibrium, extinction, amd explosion of the system 
will be discussed. 

2 The basic model 

First we shall give a short account of the mathematical prerequisites in point process theory 
which are necessary to formulate our main results. For a more elementary treatment, see 
Pfeifer, Baumer and Albrecht (1992) or the monographs of Daley and Vere-Jones (1988), 
Cressie (1991) or Konig and Schmidt (1992). 

Although we shall for practical applications only consider Euclidean spaces such as Rl, R2 
or W it is easier from a theoretical point of view to start from general topological spaces such 
as locally compact Polish spaces X with corresponding O'-field B generated by the topology 
over X (d. Kallenb~rg (1983». Further, we may assume that the topology itself is induced 
by a metric p. Let n ~ B denote the set of all relatively compact sets in X. A measure p. on 
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8 with finite values on 'R is called a Radon-measure. The set M of Radon measures over 
X can in a natural way be equipped with a O'-field M generated by the so-called evolution 

mappings 

TB: (M,M) -+ (Rt,81): 11 H Il(B) 

where 8 1 denotes the Borel a-field over Rl. Any random variable e defined on some prob­
ability space with values in (M, M) is called a random measure, and if, in particular, the 
realizations of e are counting measures, i.e. e( B) E z+ U {oo} for all B E 8, then e is called 
a point process. The realizations of point processes can be interpreted as random point 
configurations in the space X; e(B) here is the (random) number of points which fall into 
the set BE 8. Sometimes it is convenient to consider point processes of the form 

N 

e = Lex. (1) 
k=l 

where ex denotes the Dirac measure concentrated in the point x EX, N is a Z+­
valued random variable and the {X k} are random variables with values in (X, 8); here 
e(B) = Ef=l ex. (B) = Ef=11l.B(Xk ) with 1I.B denoting the indicator variable of the event 
B E 8, which makes the correspondance between measures in M and points in X more 
transparent. If, in particular, the random variables {Xd have ties with probabilities zero 
only, then e is called almost surely (a.s.) simple; i.e. there are no multiple counts of points 
in the pattern with positive probability. 

A basic point process is the so-called Poisson process which is characterized by the 
following two properties: 

1. There exists a measure J.L on 8 (not necessarily Radon) such that for all B E 8, the 
random variables e(B) are P(A) Poisson-distributed with parameter A = J.L(B) with 
the convention that for J.L(B) = 0, e(B) = 0 a.s., and for Il(B) = 00, e(B) = 00 a.s. 

2. For any disjoint sequence of sets {Bn} nEN, the sequence of random variables {e (Bn)} nEN 

is independent. 

Especially by the latter property, point patterns realized by such a Poisson process are 
called completely random; a good illustrative example is perhaps the distributional pattern 
of raindrops on a walkway, or the spatial distribution of arenicola marina in the wadden sea. 

Note that for Poisson processes, also J.L(B) = E(e(B)), BE 8. In general, 

Ee(B) := E(e(B)), B E 8, 

always defines a measure on 8, called intensity measure of e; in the Poisson case, the intensity 
measure obviously defines the distribution of a Poisson process uniquely. Due to properties 
of the Poisson distribution, the superposition e = ~l + e2 of two independent Poisson point 
process~ el and e2 again is a Poisson process with intensity measure Ee = E6 + Ee2' 
Likewise it is possible to define a p-thinning of a Poisson process e; here a "point" of the 
process is retained independently of the other ones with probability p E [0,1]. The resulting 
process ( is again Poisson with intensity measure E( = p. Ee. This can be proved rigorously 
by the fact that a Poisson process e with finite intensity measure II = Ee can be represented 
in the form (1), where N is P (II(X))-distributed and independent of the (also independent) 
random variables {Xd which follow the distribution Q = 1I(·)jll(X) provided II(X) > 0 
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(otherwise there are a.s. no points realized). General Poisson point processes with u-finite 
intensity measures can be constructed by superposition of independent Poisson processes 
with finite intensity measures concentrated on (at most countably many) disjoint subsets of 
X. Note that, in particular, Poisson point processes are a.s. simple if the intensity measure is 
diffuse (i.e. all atoms have zero probabilities). For details, we refer the reader to Kallenberg 
(1983), Daley and Vere-Jones (1988), or Konig and Schmidt (1992). 

Whereas for the study of Poisson point processes it is not absolutely necessary to use 
the full topological machinery as outlined in the beginning of this section it will become 
inevitable to do so when weak convergence of point processes is considered, as in the sequel 
of this paper. Some more notions will be needed to give simple sufficient conditions for such 
kinds of convergence. 

A semiring I ~ 'R is said to have the DC-property (i.e. being dissecting and covering), 
if for every set B E 'R and every e > 0 there exist finitely many sets It, ... ,In E I such that 
B ~ Ui=t Ij and sup{p(x,y) I x,y E Ij} < e, 1 ~ j ~ n. (Such a set B is sometimes also 
called pre-compact or totally bounded.) 

The following result on weak convergence to a simple point process is due to Kallenberg 
(1983), Theorem 4.7. 

Theorem 1. Let {en}nEN be a sequence of (not necessarily simple) point processes and e an 
a.s. simple point process such that 'Re = {B E 'R I e(8B) = 0 a.s.} contains a DC-semiring 
I. Then the following two conditions are sufficient for weak convergence of {en} to e, i.e. 
pen ~ pe; 

.~p (e.(~/;) = 0) = p (e(;Q, I;) = 0) (2) 

for all kEN, Ill"', II< E I; 

lim sup Een(I) ~ Ee(I) < 00 (3) 
n-oo 

for all I E I. 

For Euclidean spaces (X, B) = (Rd, Bd) with finite dimension dEN (and Borel u-field 
Bd) the semiring I of left-open, right-closed Intervals I = X :=t(aj, bj ] with aj < bj will be 
a suitable DC-semiring fulfilling the conditions of Theorem 1 (Kallenberg (1983), p. 11 and 
Lemma 4.3). 

In the particular case of Poisson point processes {en}, {e} with finite total intensities 
Een(X) < 00, Ee(X) < 00, conditions (2) and (3) in Theorem 1 simplify to the following 
simple condition: 

(4) 

This is obvious since Poisson processes have independent increments, and the union of sets 
in (2) can w.l.o.g. be taken to be pairwise disjoint; condition (2) then simplifies to the consid­

eration of the case k = 1 since by independence, P (en (Uj=1Ij) = 0) = nj=1 p (en(Ij) = 0). 
But by (4), 

for all I E I, hence (2) and (3) are satisfied. 
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Since in actual ecosystems, only a bounded (but possibly yery large) number of objects 
can occur, the assumptions of finite total intensities in (4) are no real restriction for modeling 
purposes here. 

3 Time-dependent Poisson point patterns 

In this section we want to investigate the long-time behaviour of spatial Poisson point 
patterns in which objects are allowed to be newly created (by birth) or discarded (by death), 
and have the possibility of movements. For this purpose, we shall consider Poisson point 
processes {eth>o of the form (1), depending on the time t as 

N(t) 

et = E t{Tk>t}eXk(t), t ~ 0, 
"=1 

(5) 

where {N(t)h~o is an ordinary Poisson counting process on the line with finite and 
positive intensity A(t) = A'(t), where A(t) = E(N(t)) with A(O) ~ 0, t ~ 0 is some 
weakly increasing absolutely continuous function. {T"hEN is a family of (also from {N(t)}) 
independent and identically distributed life times with absolutely continuous cdf F with 
F(O) = 0 and density f = F'; {X,,(t) I t ~ OhEN is a family of (also from {N(t)} and 
{T,,}) independent and identically distributed stochastic processes taking values in a locally 
compact Polish space (X,8) such as (Rd,8d ). 

The process {N(t) I t ~ O} here governs the creation of new particles whereas the counting 
processes I,,{t) = l{Tk>t}! t ~ 0, describe the life lengths T" of each individual particle in 
the system. The movement of (alive) particles is governed by the procesSes {X,.(t) I t ~ O}. 

Note that if the processes {X,,(t) I t ~ O} are Markov processes then the process {eth>o 
also is a Markov process since for any strictly increasing non-negative sequence {tn}nEN 7>f 
time points the Poisson point processes {etn }nEN are obtained successively by independent 
thinnings, superpositions and Markovian shifts of points. This follows from the Markov 
chain generation theorem as in Mathar and Pfeifer (1990), Lemma 3.2.2. 

Let Qf! t ~ 0, denote the distribution of X,.(t), kEN. Then by Theorem 1, we obtain 
the following result concerning the long-time behaviour of the pattern process {eth~o. 

Theorem 2. Let {eth~o be a family of Poisson point processes of type (5) with points 
located in a locally compact Polish space (X, 8) such that 8 contains a suitable DC-semiring 
I of relatively compact subsets fulfilling the requirements of Theorem 1. Then if there exists 
some Radon measure I' over 8 such that 

A(t)(l - F(t))Qt(1) -+ 1'(1), t -+ 00, for all I E I, (6) 

we have weak convergence of et to some Poisson point process e with intensity measure 
1', i.e. p(t ~ p(. In particular, if T = inf{t > 0 I e.(X) = 0 for all s ~ t} denotes the time 
of (possible) extinction of the system, then 

P(T ~ t) = exp ( -A(t)(l - F(t)) -100 A(s)(l - F(s)) dS) 

= e-I'(X)exp (-1 00 A(s)f(s)ds), t ~ 0 
(7) 
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with e-I'(X) = 0 for p(X) = 00. In the latter case, T = 00 a.s., i.e. the system will a.s. 
not die out. 

Proof. The first part follows immediately from Theorem 1, relation (4) and the fact 
that for the intensity measure of et, we have 

for all I E I. For the second part, observe that by our assumptions, 

N(t) 

et(X) = L: t{T.>t}, t ~ 0, 
k=l 

is a Markov birth-death process with birth and death rates fJn(t) and on(t), resp., given by 

= lim-hI p(et+h(X) = n + 11 et(X) = n) = .\(t)(I- F(t)), n E Z+, 
hlO 

. 1 nf(t) 
= ~n}J~·p(et+h(X) = n - 1 I et(X) = n) = 1 _ F(t) , n E N, 

(8) 

for t ~ O. Note that the first part of (8) is due to the fact that the counting process 
{N(t)} has birth rate A(t) at time t, with time-depending thinning by the (joint) survival 
probabilitites I-F(t), while for the second part, the death probability for a single individual 
alive particle in the time interval [t, t + h] is approximately h times the hazard rate f(t)/(I­
F(t)). To prove (7), observe that by the independent increments property ii) of Poisson 
processes, 

P(T $ t) = p( {et(X) = O} n n U.(X) = O}) 
.>t 

p( {MX) = O} )p( n{e.(X) = O} letCX) = 0) 
.>t 

= P( {MX) = O}) lim IT (1 - hf3o(t + kh)) = exp ( - Eet(X)) exp (- f'X>f30(s) dS) 
hlO k=O It 

which gives the first part of (7). The second equation follows by partial integration and 
(6). • 

4 Applications 

We shall give an example of a possible application in (X, 8) = (Rd, Bd) with finite dimension 
dEN. Suppose that the lifetime distributions are exponential with mean ~, T> 0, and the 
movements of points governed by componentwise independent Brownian motions with zero 
mean and variance (72 > 0, and initial multivariate normal distribution with independent 
components of zero mean and variance (7~ ~ O. Let further the cumulative intensity of the 
Poisson birth process be given by 

A(t) = vt eeTt + A(O), t ~ 0, (9) 

with a parameter c ~ O. Then if md denotes the d-dimensional Lebesgue measure, one 
of the following three cases will occur, depending on the choice of the parameter c: 
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Case I, c = 1: 

Here asymptotic equilibrium of the system will be achieved by weak convergence of {et} 
to a Poisson point process e with mean measure given by 

(1O) 

This follows from Theorem 2 since for any bounded Interval I in Rd we have 

(11) 

with 

(12) 

hence 

which proves (10). 

Case 2. c < 1: 

Here extinction of the system will eventually happen since JL{X) = 0 and by (7), 

P{T ~ t) = exp ( _['" A{s)f{s) dS) 
= e-A(O)e- r ' exp ( _ ['" ..;t e-(l-c).,.. ds), t ~ 0, 

(14) 

which is a proper cdf. Accordingly, similar as in (10) to (13), we have weak convergence 
of {etl to the void point process, i.e. the Poisson process with zero intensity measure. The 
following figure shows the cdf of T for the parameter choices d = 2, A{O) = 0, T = 1 and c 
ranging from 0.2 to 0.8 with step 0.1. 
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y c = 0.2 

30 

Fig. 1 
Cumulative distribution function for extinction time T 

Case 3, c> 1: 

Here the system will eventually explode since the mean number of particles in any 
bounded set B at time t > 0 is EMB) '" e(C-l)Ttmd(B)/"/21fu2, which grows to 00 for 
large t. 

For birds, one might take d = 2, C < 1 and A(O) = u~ = OJ then Eet(X) = t· exp ( - (1-
C)Tt), t ~ 0, hence the system will start from zero individuals, growing up to a maximal 
average flock size of 1/[e(1 - c)rJ (achieved at time t = 1/[(1 - C)TJ), and then gradually 
decrease to zero again. For C = 1, the system would again start with zero individuals, but 
increase gradually to a stable average flock size within every bounded region of R2. In the 
case of worms, one might take d = 2, C :5 1 and A(O) > 0, u~ > OJ then the system 
starts with a random configuration of an average positive number of individuals, and is 
either asymptotically stable over bounded regions (for c = 1) or dies out (for C < 1). Of 
course, similar results would hold true with other initial distributions pXk(O) than normal 
distributions. For instance, in revitalization experiments in the wadden sea rectangular 
areas are covered with impermeable sheets such that after some time, no more individuals 
will be inside this area. This corresponds to a deterministic thinning procedure of a Poisson 
point process at the beginning (t = 0), hence one starts with an initial distribution for the 
location of individuals which is non-normal. However, the same analysis as before shows 
that in case C = 1, a random spatial pattern will develop over time which approaches a 
homogeneous Poisson process as before, which is in coincidence with observations made in 
field experiments. 

Fig. 2 shows a simulation study of such a system for a starting homogeneous Poisson 
point process with total deletion of points within a rectangular area (taken from Pfeifer, 
Baumer and Albrecht (1992)). 

Software for visualizing moving point patterns is presently being developed by the authors 
and will be available upon request. 
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