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SOME REMARKS ON NEVZOROV'S RECORD MODEL

DIETMAR PFEIFER,* Uniuersity of Oldenburg

Abstrsct

We give a simple proof for the independence of record indices in Nevzorov's
record model which is based on ranks. An application of these results to a
probabilistic analysis of a particular searching algorithm with non-equiprobable
orderings is also discussed.

RECORD INDEX; RANKS; POISSON BINOMIAL DISTRIBUTION; NON-EQUIPROBABLE

ORDERINCS: SEARCHING ALGORITHM

l. Introduction

For a sequence of random variables {X"} let the record indices {1"} be defined by

(1 .1 )

By convention, L:I. lf In-- L for some t?, we say
sequence. In case that the sequence {X"} is i.i.d.
(1962) has shown that the {1"} are independent
probabilities

(r.2) P(1" n € N .

(1.3)

r  _ [ ] ,  i f  X " > m a x ( X r , . . .
[0, otherwise,

, Xn-t),

n 2 2 .

that X, is a record ualue of the
with a continuous c.d.f. R6nyi
random variables with success

- 1 ) - 1 ,
n

For alternative proofs and applications of this result, see for example the recent
monographs by Resnick (1987) or Pfeifer (1989a). A more general setup in which
the {X"} are independent but not identically distributed has been introduced by
Nevzorov (1986); cf. also his recent survey article (1938). The assumptions here are
that the c.d.f. 4 of X" is of the specific form

4@):  P(x,Sx) :  Fn"(* ) ,  x  e R

with parameters ün) 0 and a fixed continuous c.d.f. F. His basic result states that
under (1.3), the {/"} are still independent, but this time with success probabilities

(1.4) P(1, :D:+
L u '
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which covers Rdnyi's result for un = const. For an application of this model to the
so-called secretary problem, see Pfeifer (1989b). In the latter paper, Nevzorov's
result was proved using embeddings into suitable non-homogeneous extremal
processes. Here we shall give a more simple proof of this fundamental result using
the ranks of the underlying random variables which at the same time allows for
extensions to even more general situations. As an application, we study the
probabilistic behaviour of a particular searching algorithm in computer science in a
more general setting of non-equiprobable orderings of the elements.

2. Main results

For (not necessarily i.i.d.) random variables Xr, " ' , Xn let X,, :2n(Xr, " ' , Xn)
denote the order of Xr,... , Xn with respect to increasing ranks, i.e. X,,: oQ
X o . r )

choose o such that o-l(i) > o-t(i). Then

{E, : o} : {Xo<,>Z Xo(n-r)

The following lemma is a key result.

Lemma 1,. Let Xr, . . . , Xn+r be arbitrary random uariables and I,*t be defined as

in (L.l). Then

P ( l , * r - 1 1 E , - o ) :
P(Xn* t>  max {X t ,  -  -  .  ,  Xn}  ,2n :  o )

P(>" - o)
(2.r)

_P(Xn*r>  Xor ,>Z .  .  .?  XoQ>)

P(X o<,t

wheneuer P(>" - o) > 0.

Proof. Straightforward.

In view of relation (2.1) it is clear that 1,,*1 and X,, are independent if the
right-hand side ot(2.L) is independent of o's with P(Xn:o)>0 which is the case,
for instance, for Xr,... t Xn+r having exchangeable identically distributed compon-
ents with zero probability of ties. In this case,

P(Xo<'> L"  (n + 1) !

and hence

1

P(l,*.r: 1 | X" - o): t 1 O:+
t  n  * ' L '

"r.
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independent of o which also means that 1,,*1 and (Ir, - - - , L) are independent (cf.
Rdnyi (1962), p. 109, and Pfeifer (1987) where mixtures of i.i.d. random variables
were considered).

To give an example, consider random sampling of n elements out of a set

{*r, - -. ,x^} of m2n distinct, ordered elements without replacement. If Xk
denotes the result of the kth drawing, then (Xr,... , X,) has exchangeable (but not
independent) components with the required properties, each X1 being uniformly
distr ibuted over {* t ,  -  - .  ,x*} .  Hence 1r, . . .  , In are independent wi th success
probabilities given by (1.2).

For m:n the random vector (Xr, . . . ,X,)  is  just  a rsndom permutat ion of

{*r.,. ",xn}, each ordering of the n elements being equiprobable. Here >-1
denotes the order in which the elements .r, t . . . t xn are successively drawn.

We shall now show how Nevzorov's result follows readily from Lemma 1.

Theorem 1 (Nevzorov). Suppose that X1, . . ., Xn, n e N, are independent random
uariables with (continuous) c.d.f.'s 4, . . . , Fngiuen by (I.3). Then the record indices

L, . . . , In are independent with success probabilities giuen by $.\.

Proof. Due to Lemma 1, it suffices to show that the right-hand side of (2.1) is
independent  o f  any  permuta t ion  o  o f  {1 , . . - ,n } , fo r  a l l  ne  N.  By  a  s tandard
argument in extreme value theory, we may assume that F is an exponential d.f.,
hence by Result 2 in Dansie (1983),

P(X'<,>
' : t  

E  oot i ,
j : r

and likewise

P(X,*r)  X o@)
,:r  

E &o( i )
j : r

The right-hand side of (2.L) thus gives

P ( l , * r : 1 1 > ,  -  o ) :
& n + l

n

.1,.  uoti l* un*t
] :  t

d n + l

X  & o < 1 *  ü n + r
j : r

-  
d n + I

n + l

X ü i
j : r

which is independent of o and hence proves the theorem.

Similar to the case of random sampling without replacement, Nevzorov's result
extends to the case that (Xr, . . . , Xn) is a random permutation of n distinct,
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ordered elements {*t, " ' , x,}, with

P ( > , :  o ) :  P ( ) ,  1  :  o - ' )  :  P ( X o < a  > ' ' '  ) X < r ) )

(2 '2 )  :  P(Xr :  xo- r1 r1 t  "  '  ,  Xn :  xo- r1ny) :  I i
, : ,  

, \ ,  
oor i l

>;t denoting again the order of drawing of the individual elements which

corresponds to Plackett's (L975) first-order model.

Note that in the (simple) model of sampling without replacement, the distribution

of the maximum element, N, say, is uniform over the set {x1 t ' ' ' t x,,} since

P ( N  -  x r ) :  P ( I k :  I ,  h * r : ' ' '  :  I , : 0 )

( 2 . 3 )  _ 1  f i  / , _ 1 \ : 1
k , j t * ' \ ^  j l  n

for L = k=n; likewise for k : n.
In what follows we want to show that any distribution of N can be realized by a

(uniquely determined) Nevzorov model (i.e., with independent record indices

L, . . . , In) with property Xtr di : I. In view of relations (1.4) and (2.2), this is only

a norming condition and will be assumed to hold henceforth.

Lemma 3. Let 2,r, the distribution of the possible orderings of the elements

xr, - . . , x,, be chosen according to (2.2). Then

P(N :  x * ) :  u * ,  I=  k  =  n '

Proof. According to (1.a) we have, similarly to (2.3),

P(N - xr):  P(Ik - l ,  Ir*r:  '  '  '  --  I , :0)

: ;u,I i-,  (t-*\
i  o,r :k+r 

\  , i r " , )

for L =k<n; similarly for k:n (cf. also Plackett (1975)).

The following result shows that a Nevzorov model in general describes, in some

sense, independent sampling from a non-uniform distribution.

Theorem 2. Let the random uariable Z haute a distribution giuen by

P ( Z - k ) : n o ,  1 ' = k A n '
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Construct a realization of a random uariable recursiuely as follows:
1. Choose o(n) € {1, 2,... ,n} according to the distribution Pz.
2 .  Suppose  o (n ) ,  o (n -1 ) , . . - ,o (n - f t+1 , ) ,  l=k1n  haue  been  se lec ted .

Choose o(n- /<)e {1,2,... ,n} according to the conditional dßtribution
P'(. I Z e {o(n), o(n- L), . . ., o(n - k + 1)}), independent of the choices
before.

Then o is a realization of 2,.

Proof. Follows from Plackett (1968), p. 533, Harville (L973) or Hartigan (1968).

The construction of Theorem 2 is equivalent to independent sampling (in reverse
order) without replacement from {I,2,... ,n) according to the distribution Pz;
therefore a realization o of X, could also be obtained by independent sampling wirft
replacement until all numbers l, . . . , fl have been drawn, omitting multiple
occurrences.

3. An application to a searching algorithm

A fundamental algorithm in computer science is the linear search for the
maximum element in a field of n e N ordered elements x1 s - . . t x, by comparisons
(cf. Knuth (1973), Section L.2.I0 and Kemp (1984), Section 3.1). The quantity of
specific interest here is the number of storages of the current maximum until all
elements of the field have been examined. In our terminology, this is precisely the
number S,:Ef:zd of positive record indices (except {) in the sequerce.rl r... , xn
(note that in the above references the storage of the first element x1 is not counted).
If one assumes that the n ! possible orderings of the elements follow a specific
distribution then S" is a random variable with a distribution induced by the ordering
distribution. Usually the probabilistic analysis of the algorithm is based on the
assumption of equiprobable orderings, i.e. the probability of tlnl for each particular
ordering (see the references above). Since the approaches there are combinatorial in
nature using generating functions and recursions for the relevant probabilities, the
main interest is concerned with the calculation of P(S" : k), 0= k 3 n - 1 (involving
Stirling numbers of the first kind; cf. also Rdnyi (1962)) or E(S") and Var (S").
However, somewhat more can be said here due to the fact that in the case of
equiprobable orderings, we have precisely the (exchangeable) case of sampling
without replacement discussed in Section 2, hence Ir,' ' ' , In are independent
random variables with success probabilities given by (1.2) and thus

(3 .1 )

E(^t) :21:to* n * c- 1 + "(})

var (s,) :Z+ (t - i) : ,,gn + c -(. "(:)
(n --+ m)
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where C:0.577216 denotes Euler's constant (cf. also Kemp (1984), p. 25).
Similarly, the distribution of S" (which is Poisson binomial) can be obtained.

Moreover, as a sum of independent {0, l}-valued random variable the distribution
of S" can be approximated by a Poisson distribution for large n; namely, Lf. T"
denotes a Poisson random variable with mean E(S"):E?:2Ili (ot, likewise,
logn+C-  L ) ,  wehave

sup lP(S,  Sr)  -  P(r ,Sr) l  : td=-  r  "
xeR 

a*)  -  P(T, f  x , ,  
2 lzne togr ;  c  a+ 

o( log- i  4 ;

0.078: 
t";;;=+ 

o(rog-i n; (n +-;

whereas a corresponding normal approximation would yield an approximation error
of O(log-ä n) which is worse (see Deheuvels and Pfeifer (1938)).

Since

sup lP(s" - k) - PQ": f t) l  < sup lP(s" 5 t) -  P(n s t) l
& > O  r e R

we also obtain

. ) k  /  1 \
P(S" - k): r-^"'L + OI =-:- | @+ m),

k t  
- \ l o g n l  \  "

uniformly in k>0, where )'n:logn*C-I, fl 22, which improves Kemp's (1984)
estimate.

In the remainder of the paper we want to analyse the probabilistic behaviour of
the searching algorithm in a Nevzorov model, i.e. in a model with non-equiprobable
orderings of the elements. In view of Lemma 3, such a model is fairly general since
arbitrary distributions for the maximum N can be treated. However, the independ-
ence of record indices also shows that for a probabilistic analysis of the algorithm, it
is not sufficient to know the distribution of N alone since there are of course also
models with dependent record indices.

Since in a Nevzorov model, the number of intermediate storag€S, S,, is still given
by S" : E?:z/,, a sum of independent {0, l}-valued random variables most of the
'classical' results immediately carry over to the more general situation. For instance,
putting

p i :  p ( I i -  1 )  :  : t  ,  z =  i s  n ,

f n ,
j : t

n n

E(S") :2 p,, Var (S")

we obtain

i : 2 i : 2
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and

P(S, - 0): n rg,- 0): n ft - p)

829

/ n  \

P(^t -  1):  P( U {1' :  1} n n U, :0} I
\ i : 2  2a i= r , i 4 i  

- '  
/

: f  p, n 0- pi): i  Jt=n rt - pi):
i :2 2Si=n,is; i :2 L - 

Pi j :Z

l n  \

P ( S " : n - Z ) - P (  U { 4 - 0 } n  n  U i : 1 } l
\ i : z  z= j=n , j+ i  

- '  
/

"  +  r - p t  ": 
ZQ 

- P') r=,U,,,*,n, 
: 
Z; lr P'

P(S, - n -1) : ll P(1, - I):fr, p,

i : 2

i : 2i : 2

as well as the recursive relation

p(s,* ,  :  k)  :ä" , "  -  k  -  i )P(r , *1:  i )

: P(S" - k - I)P(l"+r- 1) + P(S" : k)P(l"*r : 0)
: p n + r P ( S n : k  -  1 )  +  ( l - p , * t ) P ( S "  : k ) ,  0 3 k 3 n ,

which generalizes known results for the i.i.d. case (Knuth (1973), p. 97, Kemp
(1984), p.23).

Also, a Poisson approximation for the distribution of S" is possible when

E!:rpTl\i:zpi is small, since for a Poisson random variable f" with mean
E(S") : El:zPt we have

sup lP(S" St) -
r e R

(cf. Deheuvels and

uni formly inf tZ0,

(n --+ *;

,  i p \
I  i : 2p(Tsr) l  :m: i  

o

| | ,l,o? ,,[,,r,orl'J\+ ol -u* { 
i :2

\ L{,äo,}' l,\,0,) ) I
Pfeifer (1988)) which gives

q k  l i o l \
P(s, : k): r-^"#* ol = | @--),

\,1,r, I
where now 1,,:Ei:zpi,  n22.
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There is, however, a significant difference between the equiprobable and the
non-equiprobable distribution case since in the first situation, the linear search
through the set {*r, . . . , xn} is as good as a search in arbitrary order. This is no
longer the case in a more general situation such as a Nevzorov model, and it is
worth while to ask for the 'best' searching strategy here. The subsequent theorem
gives an answer to this problem, based on the following two auxiliary results.

Lemma 4. Let e, x, ! >0 be real numbers with x <y. Then

x  y  
> y

a * x  a * x + y  a + y a * x * y

h-4)( '-\  a * r / \  a * x * y /  \  a + y / \  a * x * y l

x  Y  > Y  +  
x

a + x * ; * x + y  a + y  a + x + y

Proof. Straightforward.

Lemma 5. Let X, Y, Z be independent random uariables such that Y is stochasti-
cal ly smaller than Z, i .e. P(Y=x)=P(Z=x) fo, al l  xeR. Then X+Y rr
stochastically smaller than X + Z.

Proof. Straightforward.

Theorem 3. Let BrZ Ft
be a permutation of (Ft, . . . , B). Then under the assumptions of Lemma 3, Sn ß
stochastically smallest if a,: Fi, L < i < n, simultaneously minimizing E(5").

Proof. Again let p;: P(1, - 1) : ql\i:t üi, 2< i = n. Suppose for a permutation
( u r , . . . ,  d n )  w e  h a v e  d i l u ; * l f o r s o m e  L s i < n .  P u t  a : E i : l d i ,  x :  d i ,  l :  d i + t
and

, ! ,
P t : - ,  P i + ra + y a * x * y

Then by Lemma 4

,.r  ̂ \  P\PI*,  1 P,P,*r ,
\ ) . 2 )

(t  -  p!)( l  -  pi*) - (1 - pt)$ - pi*r),  p! + p',*r < pt * pi+r.

By the independence of record indices and Lemma 5, it suffices to show that
I; + I:i is stochastically smaller than Ii + Ii+r where I!, Ii*t are independent

{0, 1}-valued random variables with success probabilities pj and pi*y, respectively.
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But by (3.2), it suffices to show

P(I; + I"*'5" 
: ll -i:lir -';:l: p(r, +/,*, = 0)

P(I: + I ' ,*tSl) :  1 - plp!*t

> 1" - pipi+r: P(1, * I ,*r= 1).

Hence S" is (even strictly) stochastically smaller under the permutation
(ur, " '  ,  ui-r,  üi+r, &i,  ui+2t " '  ,  ar) than under (ar, " '  ,  un). Since by (3.10),
pi + p!*r1p, + pi+t, also E(S") is strictly smaller under the permutation
(u r , ' ' ' ,  & i - r ,  u i+ r ,  u i ,  d i+2 , ' ' ' ,  dn ) .  Th is  p roves  the  theorem.

Theorem 3 thus says that in a Nevzorov model the number S" of intermediate
storages is stochastically smallest (with minimal mean) if the set {x1, ' ' ' , x,} is
searched through in the (optimal) order x{r)t . . . t x4n) where z is a permutation
such that ü"e)2-

o,te): P(N - r"<r)) : mal ui : ma\ P(N - x;)
l=i=n l=i=n

and
( y _ , , ,

Y:  P(N :  x4k)  |  l r  e  { * ,e) , ' ' ' ,  x "<r - r l } )
1_ .1. u4it

] : t

: max 
dt(i)

k=i=n k- l
t - 

,1, 
o""

:  
rT-rg" 

P(N :  x i  lN G {x"<r) ' � ' ' ' '  x '<*-D}) '

Another conclusion is that if the set {xr, - - . , xn} is searched through in the

optimal order described above then S, is stochastically largest in the equidistribution

case since here

u4D 
= l ' ( t )  : I :  p f  ,  rs  i  s  n,P ' : 7 -

't 'o""' 

tdtG) r -

where the pf are the success probabilities for the record indices in the i.i.d. case.
This means that if the distribution of the possible orderings of the elements, X;1, is
known, the average number E(S") of intermediate storages grows at most at a
logarithmic rate if the proper strategy is chosen. However, if the distribution of ),,1
is not known, the probabilistic behaviour of S" may be arbitrarily bad with S" - n - I
in the worst case.

We conclude with some examples.

831
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Example I (triangular distribution). Let u;-Ziln(n+1), l=iSn. Then p,:

2l(i + l), 2< i < n and hence

E(s" ) :2  i :  ! -zbn ^ t1)

( 3 . 3 )  
: z  z i : t t o g n + 2 c  - 3 +  o \ ; l

var (s,) --2"i, e -1\ -ztosn *2c +-  
* -=\ i  i , t  

=Ztogn *2c +2-T.  "e)  
(n-+* ;

as well as

P(s, : k):,-^^f.. ,(#) (n-*1

with h, :z logn*2C -3,  uni formly in  k>0.  Here,  t : (nn- '1"  "2I )  would be

optimal (i.e. searching in reuerse order) with a resulting auerage of

2 n * 2 $ 1 _  2 n  ' 5 ' 1
E(s " ) :  zn+ t i - i  zn*L  1 -a* r  i

(3.4)
: lo' n t c- 1 - ros2+ o(l9gl) (n + o)

\ n  /  '

which can be obtained after some straightforward calculations.

A comparison between (3.3) and (3.4) shows that the optimal searching strategy

requires only about one half of the number of storages (on average) as in the linear

search case. However, the saving is only about log2 steps (on average) compared

with the equidistribution case (cf. (3.1)).

Example 2 (truncated geometric dßtribution). Let u;: u'-t(l- u)l$- ü), 1,=

i3n wi th some posi t iue real  number u*1.  Thef l  p i :  o t - ' ( ! -  u) l0-  u ' ) ,2=i=

n.

Casel. u(L. Some numerical analysß shows that

,"u" { ü - t, - *9r"*"t (+#) } = E(s,) :+ 2*
S m i n  { " -  

" =  
.  -  I -  a  / L - s " \ l

l ! - u 2 '  u b g ä t " g ( . r - " / J '

Moreouer, with n--)@, E(S") conuerges to some finite limit s with

,nu* {  n , ( r -  
u ) toeQ-  &)  

}= rsmin  {+ .  
(1  -  a ) loe(1  -  a ) } .

" ' - ' -  
[ - '  u l o g u  J  l . l -  u 2 '  u l o g u  ) '

and, by the monotone conuergence theorem, Sn conuerges in dßtribution to some

integrable random uariable S with mean E(S) -- s which says that for large n, the

distribution of the number of intermediate storages ß almost independent of n.

Note that in Case l, ür
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Case lI. e >"1.. Here

l u - 1 .  a - 1  .  / d " * t - 1 \ ' l
max 

f 
- (n - L)' -o 

ro g ntts \ ", - 1 / i

=E(S, )  - �o -L t  +
a  ? - z u ' - ,

S min {h@ 
- t), ;;h'.r (f])},

i .e.

833

a - l
E (S" ) :  

n  
n+O( l )  (n - -+* ;

which ß significantly worse than in the equidistribution case and comes close to the
worst case for large u.

Note that the optimal strategy here would again be a search in reuerse order; a
corresponding probabilßtic analysß can easily be reduced to Case l, with u being
replaced by Ilu.
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