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Abstract

We consider a class of secretary problems in which the order of arrival of
candidates is no longer uniformly distributed. By a suitable embedding in a time-

transformed extremal process it is shown that the asymptotic winning probability is

again lle as in the classical situation. Extensions of the problem to more than one

choice are also considered.

NON.HOMOGENEOUS POISSON PROCESS; POISSON BINOMIAL DISTRIBUTION: COUPLING;

RECORD VALUES

1. Introduction

In recent years many generalizations of the classical secretary problem as described by

Gilbert and Mosreller (1966) have been investigated by several authors (see Freeman

( 19S3) for an exhaustive survey and bibliography). The problem is, briefly, to find with a

high probabitity the best out of n = I candidates (secretaries) by comparisons, when

recalling a person examined earlier is not possible. (The same situation occurs if a tourist

wants to take a photo of the most beautiful site to be visited, when there is only one shot

Ieft and all n places are visited only once.) However, the basic assumption in most of the

models considered is the uniform distribution of the order of arrival of the n candidates,

i.e., assigning an equal probability of l/n! to each of the possible permutations of the

candidates'ranks. On comparing an early approach of Dynkin (1963) with the so-called

record problem of Rönyi (1962) it is immediately obvious that the original problem can

be reformulated in terms of extremal statistics in the follou'ing way.

Let {X" } be an i.i.d. sequence of random variables with continuous c.d.f. Fand define

( 1 . 1 )

where we use the convention /r : I .If I ̂ : I for some rl , we say that ,\ is a record ualue

of the sequence. R€nyi (1962) has shown that the {1, } form an indepenclent sequence

with
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n n

(r - p,): [I (l - p) 2 prlO - F*)
i : c  k * c

Explicit calculation of (1.4) gives, more simply,

c _ l
P(,S",.  :  1):

n
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P ( I n :  l ) : l  - P ( 1 , : 0 ) : l l n ,  n 2 l .

Considering the superposition of the Bernoulli point processes är" (where d, is the
atomic probability measure with all mass at x) as a point process (, i.e. ((A) : znee In
for Borel sets,,4, it is easily verified that the corresponding arrival time sequence {7,},
say, is a homogeneous Markov chain with transition probabilities given by

P ( 7 , * r  ) j  l T n :  i ) :  i l j ,  1 =  i  s  j .

The {7,} are also called the record times associated with the sequence {X,}. (A'time-reverse' Markov chain to {7,} is considered by Ross (1982), (1983) in connection
with a model for the aYerage-case analysis of the simplex algorithm in linear program-
ming). By the i.i.d. assumption for {X, }, all possible orderings ofvalues for Xr,. . . Xnare
equally probable, again with value I/n! The original problem is hence equivalent to
detecting the maximum in the sequence Ä, . . . , X,, or in other words detecting the last'l' in the sequence d, ' ' .,Inby means of stopping rules (i.e. by making decisions on the
basis of observations preceding the stopping moment). A similar problem arising in
computer science has recently been treated by Kemp (1984), in connection with
searching algorithms (pp. 2l-26). By the independence of the { it is now easy to derive
the optimal stopping rule for the classical problem (cf. also Bruss (1984)), i.e. the
stopping rule which maximizes the detection probability for the best candidate, as
follows.

For I s c = n,let Sn," : 2t-, Ir,denote the number of records between observation c
and observation n. Determine c such that P(,S,,, : l) is maximal. The optimal strategy
then is to accept the first candidate from c onwards who is better than the previous ones
(i.e., who induces a record value).

Note that here,s"., follows a Poisson binomial distribution with

P(,Sr,, : l) : P(exactly one of d t. . .t I, is l)

(r.2)

(  1 .3)

(1.4)

where p*: l/k, k > l.

(1 .5 )

n n
:  X Pr,f I

k - c  i - c
i + k

$ r
o?,k -  |

as is well known. Since in the present case, >f_r pl ( @, Zf_r pr: @, It is clear that S,,.
is asymptotically Poisson distributed with mean Zt_, pr:log(n/c) + o(l) : ). * o(l),
say (cf. Deheuvels and Pfeifer (1986)), whenever c is dependent on n in such a way that
nlc is asymptotically constant. Likewise, when nlc - co the total variation distance
between the distribution of ^S",. and the corresponding Poisson distribution with mean
log(n/c) tends to zero. Hence we can conclude that the asymptotic winning probability is
sup.P(S",":  l ) tendingto sup {Ae-^l l ,> 0}: l le,thelatterbeingachievedfori :  l ,
which means c - nle (to be rounded to a suitable integer; cf. Gilbert and Mosteller
(1e66)).
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Another approach to the Poisson setting of the problem can be made by a suitable

embedding into an extremal-f' process {E(/) | r > 0}. Such embeddings have been

successfully apptied before, for example by Resnick (1973), (1974), (1975), Resnick and

Rubinovitch (1973), Weissman (1975), and most recently by Ballerini and Resnick
( I 985), ( l987a,b) in connection with linear trend models for records involving non-i.i.d.

random variables. It is the purpose of this paper to show that similar embedding

techniques for the i.i.d. case can be used to give more insight into the classical secretary
problem, and an embedding into non-homogeneous extremal processes to be defined

later provides a simple tool for generalizing and solving the problem in the case of non-

uniformly distributed arrivals of candidates. Returning to the classical situation, some

characteristics of {E(t)} are {max tsksn Xo} 2 {E(n)} where 2 means equality in

distribution, and the jump times {t,l - q 1n < o} of the extremal process form a

non-homogeneous Poisson point process (with intensity measure E((B): J, (l/s)ds for

Borel sets.B contained in R+. Letting Yn:€(@ - l,nl), we see that {I,} forms an

independent Poisson-distributed sequence with E(Y,) : - log(l - p^) where again
pn: lln, nZ2 andalso.I, : min(l, Y,) which gives a maximal (and also individually

optimal) coupling in the sense of Serfling (1978). Hence we obtain immediately lower

Poisson bounds for the winning probability for an arbitrary choice of c by the fact that

the Yn are stochastically larger than the /,; in other words, if ( again denotes the

Bernoulli point process Zf;-, ö,,, we have, for any c,

P(S". ,  :  l ) :  P(( ( lc ,n l ) :  l ) :  P(( ( (c  -  1 ,  n l )= l )  >  P(( ( (c  -  l ,  n l ) :  1)

(1 .6 )

with

u:  r t , - ros( t  
- ; )  :  be*(n,c>-2)-

(See also Pfeifer (1986).)
(Note that {((c, dl) :0, whenever (((c , dl) :0, for c < d.)

The full power of the Poisson approach becomes apparent, however, when the

possibility of more than one choice is considered, in the sense described in Gilbert and

Mosteller (1966). Although the optimal strategy for this case is rather complicated (cf.

also Sz€kely (1986)), we can easily obtain a suboptimal strategy which is nearly as good

as the optimal strategy. Suppose that the possibility of K, say, choices is given

(1 < K < n).Then we could determine a value ofcsuch that P(1 5 Sn,, = rK) is maximal,

and choose up to Kcandidates starting with c with improving ranks (i.e., up to K 'ones'

in the sequence 1,, . . . , I n). The probability of having the best candidate among these can

then be estimated in a similar way by

P( l  = ,S , , .  =  K) :P( l  =  ( ( l c ,n l )= rK)=P( l  =  € (@ -  l , n l=K)

: " (-i, \  c - l  n
Y * : l ) : U e - F :  

,  
l o g c {

(1 .7) Kx
- lk

:  e-F I  pklk l
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where againp isj! in (1.6). The right-hand side of (1.7) is now maximized by tt - ln,
or c - n/exp({ KD. The foregoing analysis shows why the Poisson probabilities given in
Gilbert and Mosteller (1966) are always lower bounds for the asymptotic optimal
winning probability; a fact which has not been proved rigorously before. Numerical
computations even show that the bounds obtained by (1 .7) are also superior to those
previously described in the literature (see Szökely (1986)). Table I compares such upper
and lower bounds for the asymptotically optimal winning probability with the above
Poisson probabilities, as well as the exact values from Gilbert and Mosteller (1966).

Trc,SI-n I

1 _ ,-Kte

Zt-t e-t'pk/kl
l - ( l - l / e ) K

0.521
0.587
0.600

0.668
0.726
0.747

0.770
0 . 8 1 7
0.840

0.841
0.877
0.899

0.890
0.9t7
0.936

0.924
0.944
0.960

Asymptotically
optimal winning
probabilities

0.591 0.732 0.823 0.883 0.922 0.948

In the following section we shall drop the assumption of the equidistribution of
possible orders of arrival of candidates in allowing unequal distributions for the
sequence {X,}.

2. A generalized secretary problem

Here we shall suppose that the sequence {X,} of 'qualities' of candidates is still
independent, but each X, possesses a c.d.f. of the form F"" with {an} such that a, > 0
and, with

(2.r)

(2.2)

Pn:  dn 
/  r } , * r '

@

X  P n :  @ ,
n - l

@

X  p 2 , < q .
n - l

Typically, we might have o,n:� nf with some real p > - I in which case we have

(2.3)
ß : - l

p > - r .

The case of an increasing sequence {an} models, for instance, the situation where
candidates are preselected according to increasing formal qualifications, whereas the

{X,l correspond to some random influence such as personal behaviour, additional skills,

I r
l n losn '

P n -  1

I t t  *  i l ! ,
l n
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etc. In the situation described above we would expect to wait for a longer time period

before choosing a candidate since we expect the best candidate to be among the latter

ones; similarly, in case that {ar} is decreasing, we would expect to make a decision at an

earlier stage which might be advantageous in order to save interviewing costs. At first

sight it may seem that the winning probability under the optimal strategy is quite

different for the two situations outlined above; actually, under the conditions specified

in (2.1), it can be shown that - at least asymptotically - the winning probability will

also be close to l/e as in the classical case. This is due to the fact that as long as (2.1) holds

we are in the range of Poisson approximation, hence the arguments presented in the

introduction can be applied again. In what follows we shall make these arguments more

rigorous by embedding the problem into a time-transformed extremal process which

shows that we are confronted with the same situation as before except for a change of

time scale.
For this purpose, suppose that a real-valued function A(t), t > 0, is defined in such a

way that

(2.4)

(2.s)

A ( n ) : n  € N ; , 4 ( 0 ) : 0

A(t'), / >0is strictlyincreasing.

Note that with our assumptions such a function A(t) always exists. Without loss of
generality, we also want to assume that dr: l, which merely colTesponds to a proper

normalization of the distributions considered. Then the stochastic process

{E* ( t ) l r>0 }  de f inedby

E*( t ) :E(A( t ) ) ,  r>0

n

2 oo,
k : r

is a non-homogeneous Markov jump process (called a non-homogeneous extremal-F
process) with the property that

(2.6)

(2.8)

(2.7)

note that in particular, P(E*(/) = x): tt<tt(x) (l > 0, x e R), hence

n

P(E*(n) 5 x): II
k - l

From (2.6)itfollowsthatthecorrespondingjumptimes {ti | - a <n < m} formagain

a Poisson point process (* with

{E*(n)} = 
{,y:,*rlt

E€*(@,d l ) :be9 for0  <c <d.
A(c)

F *(x): P (,T*% rr = 1 .

(Such processes have also been considered recently by Zhang(l988).)

If we define {ff} and ty#} analogously to the classical case we see again that

I* : max(l , Ytr), this time with
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(2.e)

implying

(2.10)

E ( Y l ) :  l o 8  
f f i ,  n Z 2 ,

P,: P(:tr:  l ) :  I  -exp( - E(Yil) :  I  -  
#: 

o, 
/  oZ,oo
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as in (2.2) (cf. also Nevzorov (1986)). In particular, {ff} again forms an independent
Bernoulli sequence, and it is easy to see that for the corresponding record time sequence
{7|rtr} we again obtain a homogeneous Markov chain with transition probabilities

(2. t t ) P(TT* ,> /  |  T *  :  D :& ,  I  =  i  = j'  A( i ) '

It*:rorffi,

c * - A - ' ( & \ ,
\ e  /

(the time-reversed Markov chain to this Markov chain was also considered by Ross
(1982) in connection with a more general model for an average-case analysis for the
simplex method).

Note that the divergence part of condition (2.2) guarantees that this Markov chain is
non-degenerate (i.e., is almost surely infinite) by the Borel-Cantelli lemma applied to the
sequence {/,1}.

By the independence of the {/i} we can now conclude, as in the classical case, that for
the one-choice problem the best strategy is again the one-step-ahead policy: determine a
value c* such that P(S,,., : l) is maximal, where again P(Sn,r, : l) is given by relation
(1.4), but this time with the pr,as in (2.2). By our assumptions, again

(2.12)

with

(2.r3)

(2.14)

with the right-hand side being the limit of the left-hand side for n + @ (see Deheuvels
and Pfeifer (1986)). This means that for the asymptotically optimal c*we must again
have p* - l, or

again with an asymptotically optimal winning probability of lleby (2.12). For example,
with the choice d.n: nf , p > - I we have

(2 .15)

which reflects the fact that for increasing sequences {an} the stopping moment is
relatively later than in the classical situation, while for decreasing sequences {o,} the
stopping moment is relatively earlier.

r* -Jn exP( - r/(l + P)), P > - |"  
I ' ' ' "  ß :  -  l
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Note that by the convergence part of conditions (2.|)there exists an a.s. finite random

variable S such that €*(12, nl) - S,,r *^S a.s. for n + oo (see Pfeifer (1986) or Resnick

(1973), (1975). From here it follows by the LLN that for the number Sn,r of choosable

candidates available (i.e., of records) we have

(2.r6)

In our examples,

(2.r7)

Actually, Z can be expressed as

. 
s",--, 

1 a.s. (n - o).
loeA(n)

t :  o i , to*(t*w*#)

l imsuo lW: t  a .s .
n-*'  JZn log log n

l t r +  f ) r ogn ,  ß> - r
l ogA(n ) - i .  ,

l l o g l o g n ,  f : - l ;

similarly,asymptoticnormali tyof(S,,,_|ogAtnD/@canbeproved,aswellas
a corresponding LIL, i.e.,

lim sup t (S,.' - tog A(n))lJ2logA(n )log log log A(n): 1 a.s.

Similarly, relation (2.1 l) can be used for a strong Poisson approximation for the times

?nf when new outstanding candidates (or records) occur. Using Theorem 1 in Pfeifer

(1987), we see that we can without loss of generality define a Poisson arrival process

{rf;n > l} with unit rate and a non-negative random variable Z on the same pro-

bability space such that
Z and {(rf - ültfr} are asymptotically independent;

logA(Tf):Z *rf  + o(l)  a.s.(2 .18)

(2.r9\

where {Wo} is an i.i.d. sequence on the same probability space, uniformly distributed

over (0, l), and independent of try). From here we immediately obtain dual limit

theorems to those for {S",t}:

loeA(Ttr) a ----:.:.+ [ a.S. (n .+ cC);
n

(togA(Til - n)t'[n

is asymptotically normally distributed with zero mean and unit variance;

(2.20)

(2.2r)

(2.22)

This can be proved by observing that

( 2 . 2 3 )  z = i - l o g ( l - n - - ) <  g '  F r e  : f  - p * I *
P r F ' :  

o l r l -  p r t  o ? r l -  p * I r ,
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which is almost surely finite if >,f- r pl < oo, which holds by (2.1).
Note that in our examples, we also have asymptotically

729

(2.24)

Of course, the same arguments as before also apply to the case of Kchoices. Analogously
to (1.7) we obtain

(2.2s) P(l ssssssssssssssss�S,,".5K)>P(l =(*((c* - l ,nl)=rK):s-t" E p*klkl

with,n* again as in (2.13) which shows that asymptotically the values given in Table I are
again lower bounds for the optimal winning probability in the general K-choice problem.
Actually, following the arguments in Gilbert and Mosteller (1966), it can be shown that
for the optimal strategy also we obtain the same values as before in the classical
situation, due to the fact that we only have a change in the time scale. Note that for the
suboptimal solution, we have, analogously to (2.14),

(2.26) c* - A-'(A(n )exp( - {n ))).

Finally, in what follows we shall investigate the relationship between the distributional
assumptions for the sequence {X,} and the distribution of possible orders of arrival of
candidates. The following result will be the key for such an investigation.

Theorem. For any permutation o of { 1,. . . , n} we have

(2.27) P(X,o)
k - l  /  t < - t i - t

if o and o* are permutations such that o*(7) : o(i) < o(i): o*(i), and o(k) : o*(k) for
al lk +i, j ,  then also

(2.28) P(X"$

whenever ar ( . . . ldnt and the converse relation holding in (2.28) whenever
d r ) . . . ) d r .

Proof. Letal : do(k), | =k S n. Define correspondingly Xt : Xo(k)tandIf ,ptasin
(l.l) and(2.2), respectively. Then again Xl,. . ., Xf and hence also Il,. .., ff (via the
embedding) are independent. Now

P(X"0)
k_r  , r_ l  

X  " f

whence (2.27) follows. For the second statement it suffices to assume I <j : i * | S n.
Then

l f r+  f i rogT f ,  P>- rtogA(rl)- 1l-
[ o g l o g ? " f , ,  f : - l .
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(2.2s) ! ! I . "ot<' ' '  <x"a) :  I iP(X,.ut

DIETMAR PFEIFER

correspondingly for the second case.
Let I denote the order of candidates with respect to increasing ranks, and suppose that

I has a distribution of the form

n  l n  k
P(I: o): [I a* / II X oogr.

k - r  /  * - t  i - t

Then the 'qualities' 
{X,} of the candidates can be considered as being independent

random variables with distributions specified by the {a,} as above. Note that if N
denotes the position of the maximum in the sequence Xr,. , ., Xn, then we have

(2.30) P(N : k) :  P(Ik: l ,  I**r :  " '  :  fn :  0): F* I I  Q - pi):  :1.k :
i - k + t  

' t '  
A ( n )

with the p; as in (2.2).

Example l. Suppose that ap : k, | = k =r. Then Xpcorresponds to the maximum
of k i.i.d. random variables with c.d.f. .F. In this case.

k

X do.(^)
m - l
T :

X do(m)
m - l

p o : 2 / ( k  +  1 ) ,  l s k s n ,

P (N :  k ) : zk l (n (n * l ) ) ,

(2.3r)

and

(2.32)

which means that N follows a triangular distribution. Further,

(2.33)

Explicit calculation for n : 4 gives optimality for c :3 with a corresponding winning
probability of 0.5 (in the classical case, we would have c :2 with winning probability of
0.4583). Table 2 contains the distribution of the corresponding I.

Tnsrr 2

, . - D ,  
f  

2  
c > _ 2 .P ( S , , , : l ) :  

* * D o 1 , k _ 1 ,

(r234) (1243) (1324) (1342) (1423) (1432) (2134) (2143\

P(2 :  o )  0 .1333 0 .1  143

o (23t4) (234t)

0.1000 0.0750 0.0686

(2413) (2431) (3124\

0.q600 0.0667 0.0571

(3t42) (32t4) (3241)

P(2:  o)

o

0.0400 0.0267

(34t2) (342r)
0.0222 0.0333

(4132) (4213)

0.0250 0.0267 0.0178
(423r) (4312) (432r)

0.0286

(4r23)

P(2:  o) 0.0143 0.0121 0 . 0 1 7 1 0.0150 0.0r43 0.0l l r  0.0107 0.0095
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Note that the corresponding distribution in the classical case would yield a constant
probability of 0.041 7 for each of the 24 cases.

Example 2. Suppose that a1 : llk, | 3 k 3 n.Inthis case, nice simple formulas for
the expressions involved are not available; however,

731

(2.34)

and

(2.3s)

P(N: k) -+' 
klog n

P(S" , . - l ) - l oq (c - l )  i  +'  
logn o":, klog k'

For n :4, we have more precisely

where the optimal strategy requires c: l, i.e., choosing the first candidate without
inspecting the other ones. Here the winning probability is P(N: l):0.48. The
distribution of the corresponding I is given in Table 3.

T,lsrn 3

P(N : k)

o (1234) (1243) (1324) (1342) (1423\ (r432) (2134) (2143)

P(2: o) 0.0073

o (2314)

0.0076 0.0082

(234t) (2413)

0.0095 0.0091

(243r) (3124)

0 .0101 0 .0145 0 .0152

(3t42) (32t4) (324r)

P(2: o) 0.0262

o (3412)

0.0443 0.0305

(342t) (4123)

0.0492 0.0245

(4132) (4213)

0.0284 0.0393 0.0665

(423r) (43t2) (432r)

P(2: o) 0.0650 0.0949 0.0366 0.0404 0.0610 0.0985 0.0866 0.1266

The foregoing examples show that when N has a non-uniform distribution we usually
have a gain in information in that the optimal winning probability is larger than in the
classical case where Nhas a uniform distribution. However, for nlarge, and under our
assumptions, the gain of information tends to zero since the asymptotic winning
probability is precisely what we would obtain in the classical case.

Note also that bV (2.30), to each possible distribution of N with support { 1, . . . , n}
there corresponds a class of models of the above form which are equivalent in that they
differ only in the (fixed) underlying c.d.f. ̂ F(i.e., a fixed multiplying constant for the ae.)

The foregoing analysis shows that as long as we are in the range of Poisson
approximation we cannot expect to obtain asymptotically a better result than in the
classical case. The following example shows that an improvement is indeed possible
outside this approximation range.
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Example 3. Suppose that we are given a sequence {o,} such that for the pndefined in

(2.2)we have pn- p forsome 0 < p < I as n "+ @.(Such a situation occurs e.g. when we

have aryn:In-r for some y>1, with p:(y-l)/y.) In this case, the asymptotically

optimal strategy yields c - n - m where m is the integer maximizing the expression
(m* l)p(l  -  p)^, i .€.,  m- {- Ulog(l- p)} - l .  (This fol lows from relat ion (1.4),

for example). Whenever this last expression is integer we obtain a winning probability of
- pl(e(l - p)log(l - p)) which is strictly larger than lle, and in the general case this

expression is always an upper bound for the optimal winning probability which by some

numerical analysis can also be shown to remain larger than lle in general. For instance, if

p is larger than 0.5, i.e., y > 2, then we always have m :0 which means that we choose

the last candidate throughout without inspecting the other ones, with a winning

probabi l i ty  of  p .  l f ,  for  instance,  p:0.2,  i .e . ,  y :1.25,  then m:3 or  m:4 is

asymptotically optimal, with a winning probability of 0.4096. Note that the (asympto-

tically) optimal z depends only on p which means that the (asymptotically) optimal

strategy considers only a fixed number of candidates, independent of the total number of

candidates.
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