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discuss applications of these results. 

AMS Subject Classifications: Primary 60F05, 62E20; Secondary 47D05, 20M30. 

Key words and phrases: Poisson approximation; Wasserstein metrics; minimal metrics; operator 
semigroups. 

1. Introduction 

There has been in the last decades a continued interest for the approximation of 
the distribution of Sn = XI + ... + X n, where XI' ... ,Xn are independent Bernoulli 
random variables with probabilities of success PI'"'' Pn by a Poisson random 
variable Tn whose expectation is a function of PI., ... , Pn . 

The main justification which has been given for such investigations is that the 
exact distribution of Sn is in general extremely involved for unequal p/s and large 
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2 P. Deheuvels et al. / Poisson approximations 

values of n. Simple examples show in fact that exact evaluations may require an 
excessive computing time in practice. Therefore it is logical to seek a simple approxi­
mant. The most reasonable candidate for such an approximation has been found 
to be the Poisson distribution. 

From the poineering work of LeCam (1960) to the recent papers of Barbour and 
Hall (1984) and Deheuvels and Pfeifer (1986a) a great effort has been made in orde 
to evaluate the error of these approximations by measuring the fit via the total varia­
tion distance 

do(L(Sn)' L(Tn)) = sup IP(Sn E A) - P(Tn E A)I 
A 

1 00 

=- L IP(Sn=k)-P(Tn=k)l· 
2 k=O 

(1.1) 

Several precise evaluations of do (L(Sn ), L(Tn)) are now known, so that one may 
consider that this problem is basically solved, except for second order refinements. 

The motivation for this paper is that, in spite of the fact that a precise knowledge 
of the magnitude of do(L(Sn)' L(Tn)) is of great practical interest, it does not 
answer all questions. 

Consider for instance the following simple example. Suppose that one knows the 
exact values of Pb ... , Pn and that the aim is to compute from these values a and 
b such that P(a ~ Sn ~ b) "? 95 0/0. Clearly a Poisson approximation will be of no use 
for this sake, if we only know that (say) do(L(Sn),L(Tn))==10%. 

It turns out that one may give answers to such a problem by computing other 
measures of fit that the total variation distance. Aside from the Kolmogorov 
distance, this leads to the general question of evaluating the distance between the 
distributions of Sn and Tn for an arbitrary distance in the space of probability 
distributions. 

The aim of this paper is precisely to bring solutions to this problem in the general 
setting of minimal metrics of the form 

(1.2) 

where o( . ) is a non-negative function, and where the infimum in (1.2) is taken over 
all possible joint distributions of (Sn' Tn) with the given marginals. 

In Section 2, we give a general review of the properties of minimal metrics (we 
use this term in spite of the fact that further assumptions are requested on o( . ) for 
(1.2) to define a metric in the usual sense) which will be needed in our work. We 
also show that do is a minimal metric for an appropriate o. 

In Section 3, we use coupling techniques for the evaluation of d(b)(L(Sn),L(Tn)). 

Such methods consist in building explicit joint distributions of Sn and Tn to obtain 
bounds for d(b). We also give in this section lower bounds based on direct 
methods. 

In Section 4, we use semigroup arguments which enable us to obtain further upper 
bounds for d(b) under very weak assumptions on o( . ). 
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Section 5 contains some examples of applications of this work, with emphasis on 
confidence intervals. 

Our main result, captured in a series of theorems, is that, whenever PI = PI,n' ... , 
Pn=Pn,n vary in such a way that L7=IPi=0(1) and maxI:Si:snPi~O, then, under 
very weak assumptions on b( . ), there exist constants 0< C I ~ C2 < 00 such that, as 
n~oo, 

n n 

CI L pl~d(J)(L(Sn),L(Tn))~C2 L pl. (1.3) 
i=1 i=1 

The interesting feature of (1.3) is that (with the exception of the values of the nor­
malizing constants CI and C2) the rate O( L7= I pl) for d(J)(L(Sn)L(Tn)) does not 
depend upon b. 

Asymptotic evaluations for the total variation distance and for the Fortet-Mourier 
metric (which corresponds to b(u) = lui) given in Deheuvels and Pfeifer (1986a,b) 
show that such a result fails to be true in the range where L7= I Pi~ 00, so that (1.3) 
gives an optimal result in the case we consider. 

2. Probability metrics 

Let (Q, A, P) be a probability space, and let X denote the set of all random 
variables taking values in N = {O, 1, ... } and defined on (Q, A, P). We shall denote 
by ~ = ~I = {L(~)}, ~2 = {L(~, O}, ... the sets of all probability distributions L(~) 
of ~, L(~, 0 of (~, 0, ... , where~, (, ... EX. Throughout, we shall make the assump-
tion that (Q, A, P) is rich enough to carryall possible distributions in ~k' where 
k"?1 is an arbitrary integer. In other words, for any multi-indexed non-negative se­
quence {Pi!. ... , ik h 2:0, ... , i

k
2:0 with sum equal to one, there exist random variables 

~J, ••• '~kEX such that, for all il"?O, ... ,ik"?O, 

(2.1) 

The existence of probability spaces which fulfill this condition can be proved by 
Kolmogorov's theorem. Notice (see e.g. Bauer (1981) pp. 168-169) that there exists 
an (Q, A, P) which carries all distributions in ~ k for an arbitrary k"? 1. The same 
arguments by taking the product spaces for all values of k = 1,2, ... gives the result. 

The following lemma will be useful in the sequel. 

Lemma 1. Let A, Band C be complete separable metric spaces, let PI be a prob­
ability measure on A x Band P2 on B x C. If the marginals PI I Band P2 1 B coincide, 
then there exists a probability measure P on A x B x C such that PiA x B = PI and 

pIBXC=P2• 

Proof. See Berkes and Philipp (1979). Note here that N, N2
, ••• are separable com­

plete metric spaces with the discrete metric (2d(P, q) = l{p:;tq}' the corresponding 
Borel sets being all subsets of N, N2

, •••• D 
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Following Zolotarev (1984), we shall say that a function f.1 defined on fffJ2 and 
assuming values in the extended interval [0, 00] defines a probability metric on X if 
the following conditions hold for all ~, ( and 1] E X: 

(Dl) P(~ = 0 = 1 => f.1(L(~, 0) = 0; 
(D2) f.1(L(~, 0) = f.1(L((, ~»; 

(D3) f.1(L(~, 1]» ~f.1(L(~, (» + f.1(L((, 1]». 
Let g be a function defined on N2 and taking values in [0,00]. The following 

lemma gives a simple construction of probability metrics based on g: 

Lemma 2. Assume that g : N2 
--+ [0, 00] satisfies for all p, q and r EN: 

(dl) p = q => g(p, q) = 0; 
(d2) g(p, q) = g(q,p); 
(d3) g(p, r) ~ g(p, q) + g(q, r). 
Then, for all 1 ~ Y < 00, f.1 Y,Q (L(~, (» = E l/y (g Y (~, 0) defines a probability metric 

on X. 

Proof. (Dl) and (D2) are straightforward from (dl) and (d2). For (D3), we use (d3) 

jointly with the convexity inequality E( 1fI( U, V» ~ IfI(E( U), E( V», where IfI(U, v) = 
(u1/Y+vI/Yf, U=gY(~,O and V=gY((,1]). D 

In the sequel, we will consider the following main examples. 

g(p, q) =A(lp-ql), (2.2) 

where A(O) = 0, A (n) = I7= I ai' and where {an, n ~ 1} is a non-negative non­
increasing sequence. 

g (p, q) = e 5 (p - q) = I p - q I 5, 0 < S ~ 1 . (2.3) 

(2.4) 

where we denote by 1 E the indicator function of E. 
We will now introduce the notion of minimal metric (Zolotarev (1976» as follows. 

Let f.1 be a probability metric on X. The corresponding minimal metric {t is defined 
for all ~, ( E X by 

(t(~, 0 = inf f.1(L(~, (», (2.5) 

where the infimum is taken over all joint distributions L(~, 0 with fixed margins 
L(~) and L(O. We shall call such a joint distribution a coupling of ~ and (, and 
denote by C(~, 0 the set of all couplings of ~ and (. 

Lemma 3. If f.1 is a probability metric on X, then (t is also a probability metric on X. 

Proof. Here and in the sequel, we shall let f.1(~, 0 ~ f.1(L(~, 0) when f.1 is a probability 
metric. The proof that {t satisfies (Dl) and (D2) is straightforward. For (D3), we 
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limit ourselves to the case where P(~, 0 < 00 and P((, 11) < 00. Let e> 0 be fixed. There 
exist couplings L(~, 0 and L((,I1) such that 

I1(L(~, 0) + 11 (L((, 11» ~P(~, 0 + P((, 11) + e. (2.6) 

By Lemma 1, we see that there exists a joint distribution L(~, (, 11) with margins 
L(¢, 0 and L((, 11). By (D3) and (2.6), this implies that 

I1(L(¢, (»~I1(L(¢, 0) + 11 (L((, 11»~P(¢, 0 + P((, 11) + e. (2.7) 

Since (2.7) holds for all e>O, this implies that P(¢,O~P(¢,O+P((,I1). D 

Notice that, with our definitions, if L(¢) =L(O, then there exists a coupling L(¢, 0 
of ¢ and (such that P(¢ = 0 = 1. It follows that P(¢, 0 = O. This shows that P(¢, 0 = 
P(L(¢), L((» depends only upon the marginal distributions L(O of ( and L(O of (. 
Such a probability metric (which defines an unbounded semi-distance on flJ) is 
usually called simple. 

We will now specialize in the so-called Wasserstein metrics (Wasserstein (1969», 
originally introduced by Kantorovitch and Rubinstein (1958), defined for ~,( E X by 

= inf EIIY(gY(¢,O), 1 ~y<oo, 
C(~,O 

where the infimum is taken as in (2.5), and where g satisfies (dl)-(d3). 

(2.8) 

In 1982, Szulga proved the following result, in the case of separable metric spaces. 

Lemma 4. Let g satisfy (dl)-(d3). Then 

d1,Q(¢' 0 = sup{E(f(¢) - f(O)}' (2.9) 

where the supremum is taken over all functions f such that, for all p, q EN, 

If(p) - f(q) I ~ g(p, q). (2.10) 

Further extensions of Szulga's result have been given by Kellerer (1982) who 
showed among other theorems that, for y = 1, the infimum in (1.8) is reached. In 
fact, his argument directly extends for a general 1 ~ Y < 00 so that we have: 

Lemma 5. Let g satisfy (dl)-(d3). Then, for any L(¢) and L(O E flJ, and for any 
1 ~ Y < 00, there exists a joint distribution L(¢, 0 E flJ 2 such that 

(2.11 ) 

The joint distribution L(¢, 0 of ¢ and ( such that (l.II) holds is called a maximal 
coupling of ¢ and (. In the sequel, we shall give explicit descriptions of maximal 
couplings in several examples (see e.g. Proposition 3 and Lemma 6). 
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Example 1. The total variation metric is a Wasserstein metric corresponding to (2.4) 
and can be defined by (see e.g. Dobrushin (1970)) 

do(C:,O= inf P(C:*O= sup IP(C:EA)-P«(EA)I. (2.12) 
C(~,O ACN 

Observe that the probability metric associated to the discrete distance by f1(C:, 0 = 

P(C: * 0 = E(1 {~*O) coincides on N with the Ky-Fan metric (distance in probability) 
K(C:, 0 = inf{e: 0::5e::51, P(IC: - (I >e)::5e). It follows that (2.12) is a special case of a 
result of Strassen (1965) who showed that the Prohorov distance n(C:, 0 = inf{ e: 0 < 
e < 1: P(C: E C)::5 P«( E CI:) + e, P«( E C)::5 P(C: E CI:) + e for all closed sets C} coin­
cides with the minimal metric associated to K (see also Dudley (1968)), namely 

n(C:, 0 = inf K(C:, O· 
C(~,O 

It is straightforward on N that n(C:, 0 = do(C:, O. 

(2.13) 

Example 2. The Fortet-Mourier (1953) metric (see e.g. Vallender (1973)) can be 
defined by 

d) (C:, 0 = inf E(IC: - (I) = L IP(C:::5 n) - P«(::5 n)1 
C(~,O n=O 

= sup E(f(C:) - f(C:)), (2.14) 

where the supremum is taken over all functions f such that, for all P, q EN, 

If(p) - f(q) 1 ::5lp - ql· 

Example 3. For any O<y<oo, define 

d (C:,O= inf EIImax(Y')(IC:_(IY). 
Y C(~,O 

(2.15) 

Observe by (2.3) that for 0<y/s::51, (2(p,q) = Ip-qIY/s satisfies (dl)-(d3), so that 
by Lemma 2, E IIs({2S(p,q)) is a probability metric for all s2:max(y, 1). It follows 
from Lemma 3 that dy is always a probability metric. Here, the definition of dy 

coincides with that of d) for y = 1. Furthermore, for any 0::5 y'::5 ::5 y" < 00, we 
always have 

(2.16) 

Finally, we see that 1C:-(IYll{~*O as ylO, which justifies the notation for do. 

It is noteworthy that the metric do induces on fjJ the topology of weak con­
vergence (see e.g. Billingsley (1969)). Aside from this case and the case y = 1, very 
little is known concerning dy (see Riischendorf (1985) and the references therein). 
For y 2: 1, Rachev (1982) showed that the following statements are equivalent: 

(2.17a) 
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(2.17b) 

where ~ denotes weak convergence and where ~b~2, ••. ,~ELY(Q,A,P). 
Further references on probability metrics are to be found in Dudley (1968) and 

Zolotarev (1976, 1984). 

3. Poisson approximations by couplings 

In this section, we consider a non-negative function c5: N -+ [0, 00) and evaluate 
d(b)(~, () = infC(~,o E(c5(I~ - (I)) under additional assumptions on ~,( E X and c5. 

First, we consider the simple case where ~ follows a Bernoulli distribution. 

3.1. Individual couplings 

We assume here that ~ =X follows a Bernoulli B(p) distribution (i.e. P(X = 1) = 
1 - P(X = 0) = P E (0,1)) and that Y follows a Poisson P(A) distribution (with expec­
tation A). In our first result, we compute the exact value of d(b)(X, Y). 

Proposition 1. Assume that c5(j) is non-decreasing in } = 0, 1, .... Suppose that 

X - B(p) and Y - P(A), where A:s: A = -log(1 - p). Then 

00 Ai 
d(b)(X, Y) = (1 - p)c5(O) + (e- A -1 + p)c5(1) + ,L -:-;- e- A c5(j - 1). (3.1) 

J= I j. 

Proof. Let Pi} = P(X = i, Y = i). Notice that, for all} = 0,1, ... , POi = (Ai I) !)e- A 
- Plj. 

Hence, by replacing POi by this expression in 

we obtain 

00 00 

E(c5(IX - YI)) = L Pljc5(I} - 11) + L POi c5 (j), 
i=O i=O 

00 

E(c5(IX - YI)) = PIO(c5(1) - c5(0)) - L Plj(c5(j) - c5(j - 1)) 
i=l 

00 Ai 
+ e- A c5(O) + L -:-;- e- A c5(j). 

i=lj. 

Clearly the Pi} 2: ° form a contingency table subject to the constraints 

and 

00 

PIO+ L Plj=P' 
i=l 

max(O, e- A + P - 1) :s:plO:s: min(p, e- A
), 

Ai 
O<P <-e-A - li-., . 

j. 

(3.2) 

(3.3a) 

(3.3b) 

(3.3c) 
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It follows from (3.2) and (3.3) that the minimum possible value of E(J(IX - YI)) 
is reached when simultaneously PIO=max(O,e- A +p-I)=e-A-I +p is mini­

mum, while for j= I,2, ... ,PIj=(Ai/j!)e- A is maximum. Such a choice fulfills 

PIO + L;= I Plj = p and implies (3.1) 0 

Observe for further use, that if A?: A = -log(1- p), we have the lower bound (let 
in (3.2) PIO = 0 and Plj = (A i /j!)e- A, j = 1,2, ... ) 

00 Ai 
d(6)(X, Y)?:e-AJ(O) + .L ~e-AJ(j-I). (3.4) 

J=IJ. 

In the course of the proof of Proposition 1, we have obtained the following result. 

Proposition 2. Under the assumptions of Proposition 1, a coupling of X and Y such 
that d(6)(X, Y) = E(J(IX - YI)) is defined by Pi} = P(X = i, Y = j), where 

Ai 
Poo= I-p, POi=O, PIO=e-A-I +p, PIj= ~e-A, j= 1,2, .... (3.5) 

J. 

This coupling is the unique one such that d(6)(X, Y) =E(J(IX - YI)) if we assume 
that J =1= O. An explicit construction may be obtained by letting Y = X1], where X and 
1] are independent, and 1] follows the distribution given by 

Ai 
P(1]=j)=-. e- A, j=I,2,.... (3.6) 

PJ! 

We will now concentrate in minimizing d(6)(X, Y) with respect to A. Our main 

result is as follows. 

Proposition 3. If, in addition to the hypotheses of Proposition 1, we assume that 
J(O) = 0, J(1) > 0, and that J(j) - J(j - 1) is non-increasing in j = 1,2, ... , then, for 
all 0 <p::::; t, the minimum of d(6)(X, Y) is reached for A = A = -log(1 - p). 

Proof. Let ai = J(j) - J(j - I)?: O. Straightforward computations show that 

d ( 00 Ai ) 00 Ai 
- .L ~e-AJ(j-I) =.L ~e-Aai>O, 
dA J = 2 J . J = I J. 

(3.7) 

while 

d
d
A 

(e-AJ(1) + .I ~,i e-AJ(j -1)) = e- A (_ aj + .I ~,i ai ) 
J=2J. J=IJ. 

::::;aje- A(e A -2)::::;0, (3.8) 

whenever A ::::; log 2. 0 

If O<P::::;t, then A=-log(1-p)::::;log2. It follows from (3.1), (3.4), (3.7) and 
(3.8) that d(6)(X, Y) is a function of A, non-increasing for O<A::::;A and increasing 
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for A ~A < 00. A close look to (3.8) shows that Proposition 3 can be extended as 
follows. 

Proposition 4. If, in addition to the hypotheses of Proposition 1, we assume that 

b(O) = 0 and b(1) > 0, there exists a pf5 depending upon the sequence b( . ) only, such 

that, for all O<P~Pf5' the minimum of d(f5)(X, Y) is reachedfor A = ..1.= -log(1-p). 

Proof. Take Af5 = -log(1 - p (5) to be the unique root of the equation in A 

00 Aj 

b(1) = L ~(b(j) - b(j - 1». 
j= I}. 

D (3.9) 

Remark 1. Among the possible values of A > 0, we see that two cases deserve a 
special interest: 

(i) A = -log(1- p) which achieves minimization of d(f5)(X, Y) independently of b 
for p~O. This choice has been introduced by Serfling (1975). If we consider the con­
struction of the maximal coupling Y =XlJ given in (3.6), we see that for such a 
choice Y~X with probability one. 

(ii) A = p which amounts to take E(X) = E( Y). If ao::::: 1.596 is the root of the 
equation x 3 +3x+2, Deheuvels and Pfeifer (1986a) have shown that if 'L7=IPi~a 
with O~a<oo and max(pI, ... ,Pn)~O as n~oo, then do(Sn,P('L7=IPi» becomes 
asymptotically smaller than dO(Sn,P('L7=1 Ai» as n~oo if a>ao, where Ai= 

-log(l-pi)' i=I, ... ,n. 

3.2. Upper bounds based on individual couplings 

From now on, we assume that Sn = XI + ... + X n, where XI' ... ,Xn are indepen­
dent random variables following Bernoulli B(PI), ... ,B(Pn) distribution. We will 
also assume that 

b(O)=O, b(1»O, and for some O<r~l, 
b IIr (Ip - q I) satisfies (dl)-(d3), 

(3.10) 

so that D(~, 0 = {d(f5)(~, O} r defines a probability metric on X. Typical examples are: 
b(m) = mY, 0 < y < 00, r = I/max(y, 1) (see (2.15»; 
b(m) = 1 {m :;CO}, r = 1 (see (2.12»; 
b(m) = 'Lj: I aj' where {aj' j> I} is non-negative and non-increasing, r = 1 (see 

(2.2». 
Our first result is as follows. 

Theorem 1. Assume that (3.10) holds, and that maxI ~i~n Pi~ O. Then, uniformly 

over n~ 1, 

(3.11 ) 
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and 

(3.12) 

where Ai=-log(I-Pi)' i= 1, ... ,n. 

Proof. Define Tn = Yl + ... + Yn, where (Xl' Yd, ... , (Xn, Yn) are independent pairs 
of random variables such that for i= 1, ... ,n, d(b)(Xi , If)=E(6(IXi - lfl)). The 
feasability of such a construction follows from the general results of Section 2, and 
from Propositions 2, 3. By taking successively A = Pi and A = Ai in (3.1), we see 
that 

(3.13) 

and 

(3.14) 

where the '0(1)' terms are uniform over i=I, ... ,n, when maXl::;i::;nPi~O. 
The results follow from (3.13) and (3.14), jointly with the inequalities 

{d,J\S", Tn»:S E(O([J! (X,- Y;)[)) :SE([t o!/'<lX,- Y;I)],) 

:SEct! o(IX,- liD) ~ ,t! dlJ)(X" li), (3.15) 

where we have made use of the triangle inequality 61/r(p+q)~61/r(p)+61/r(q) 
and of the inequality (al lr + ... + ayrr ~ al + ... + an for ab ... , an ~ 0 and 0 < r~ 1. 

D 

By (3.15) and Proposition 1, we have the following result. 

Theorem 2. Assume that (3.10) holds. Then 

(3.16) 

where A b ... , An are arbitrary positive numbers. 

Example 4. (a) Take 6(m) = 1 {m*O}' By (3.16), we obtain the bounds for the total 
variation distance: 

(3.17) 
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(Le Cam (1960», and 

do( L(Sn ),P(tl Ai))" itl (1- e-A'(I + Ai))" ~ t At' (3.18) 

(Serfling (1978», where Ai = -log(1 - Pi), i = 1, ... ,n. 
(b) Take b(m) = Iml. By (3.16), we obtain the bounds for the Fortet-Mourier 

metric: 

(3.19) 

and 

(3.20) 

(c) Take b(m) = Im12. By (3.16), we obtain likewise 

(3.21) 

and 

(3.22) 

Similar results oould be obtained for b(m) = 1m Ii, j = 3, 4, .... 

An interesting application of (3.21) and the arguments above is as follows. 

Corollary 1. Let XJ, Xb ... be a sequence of Bernoulli random variables with 
P(Xi = 1) = Pi E [0, 1], i = 1,2, .... Without loss of generality, we may assume that 
XI' Xb ... are defined on a probability space jointly with a sequence Y1, Y2, ... of in­
dependent Poisson random variables with E(~) = Pi, i = 1,2, ... , and such that, if 
Sn =XI + ···Xn and Tn = Y1 + ... + Yn, we have 

n 

E(ISn - Tn 12) = L pl for all n = 1,2, .... (3.23) 
i=l 

Furthermore, we may assume that (XJ, Y1), (X2' Y2), ... are independent and such 
that 

E(IXi - ~ 12) = pl for all i = 1,2, .... (3.24) 

Proof. We use the construction in the proof of Theorem 1, jointly with (3.1). D 
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3.3. Lower bounds 

In this section, we discuss the sharpness of the upper bounds obtained in 
Theorems 1, 2. We start with the straightforward lower bound: 

Theorem 3. Assume that (3.10) holds. We have for all A> 0, 

d(J)(L(Sn)' peA)) ~ J(1)do(L(Sn)' peA)). (3.25) 

Proof. By (3.10), we assume that for some r>O, J1/'(lp-ql) satisfies (dl)-(d3), so 
that we always have for all s, t ~ 0, 

(3.26) 

so that J(m) is non-decreasing in m ~ 0. Assume now that Sn and Tn - peA) are 
defined on the same probability space. We have 

00 

E(J(ISn- Tnl))= L J(n)P(ISn- Tnl =n)~J(1)P(Sn*Tn)' 
n=1 

This, jointly with (2.12), suffices for proof. 0 

By Theorem 3, we can prove the sharpness of the bounds in Theorem 1. This 
follows from the following evaluations of do (L(Sn ), peA)). 

Proposition 5. Let Ai = -log(1 - Pi), i = 1,2, .... 
(1) If r.7= I Pi~O, then 

and 

1 n 
= (1 + 0(1)) - L pl. 

2i=1 

= L pl L Pi . 1 + 0(1) [ n. ] / [n ] 
V2ne i=1 i=1 

(3.27) 

(3.28) 

(3.29) 
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(4) If r.7=IPi~aE(0, 00) and maxI:Si:snPi~O, then there exists positive func­
tions Ao(a), A~(a) and A; (a) such that 

do( L(Sn)' pet! p;) ) = (I + o(I))Ao(a) ;t! pl, (3.30) 

(3.31 ) 

and 
n 

inf do (L(Sn ), P(A» = (1 + 0(1 »A; (a) L pl. (3.32) 
A>O i=1 

Proof. See Deheuvels and Pfeifer (1986a) where explicit closed forms are given for 
Ao(a) and A~(a). Note that in the above reference (3.29) is proved with the restric­
tion that r.7= 1 pl = 0(1). The extension of this result to the conditions in (2) is 
given in Deheuvels and Pfeifer (1986b). 0 

Corollary 2. Assume that (3.10) holds and that r.7=lpl~0. Then 

d(J)( L(Sn)' p(t p;) ) = (I + 0(1))6(1) ;t! pi, 

and 

d(O)(L(Sn), p(.t Ai)) = (1 + 0(1» inf d(L(Sn)' peA»~ 
1=1 A>O 

1 + 0(1) ~ 2 
= J(1) L.J Pi . 

2 i=1 

Proof. It follows from Theorems 1, 3 and Proposition 5. o 

(3.33) 

(3.34) 

We also see from Theorem 3 and Proposition 5 that, whenever r.7= 1 Pi = 0(1) 
and maxI:Si:snPi~O, then the bounds given in (3.11) and (3.12) are sharp up to a 
multiplicative constant. This result will be extended in the next section, under 
weaker hypotheses upon J. 

4. The semigroup approach 

In this section, we shall provide a general upper bound for d(O)(L(Sn)' P( r.7= 1 pJ). 

Throughout, we will use the notation of Section 3. We will make the following 
assumptions on J(.) which are implied by (3.10): 

(M1) J(k-j)~J(k)+J(j), O~j~k; 
(M2) J(k) > 0, k~ 1; 
(M3) sUPk?:dJ(k+ 1)/J(k)} =M<oo. 
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Observe that if (3.10) holds, then (see (3.26)) b(·) is non-decreasing and b(j»O, 
so that (Ml )-(M2) hold (in fact we have b(k - )):s, b(k) + b(j)). Also, by the triangle 
inequality, 

so that M:S, 2'. 
To see that (Ml)-(M3) covers a larger family of b( . ) functions than given by 

(3.10), we can use the following example. 

(4.1) 

for which M = a. 
The main result of this section is as follows. 

Theorem 4. Under the conditions (Ml)-(M3), we have 

b(l) ( 1 ) [n ] ( n) :S, - M+2+ - .L p? exp (M-l).L Pi . 
2 M 1=1 1=1 

(4.2) 

The proof of Theorem 4 is based on the following auxiliary results. 

Lemma 6. Under (Ml), we have 

where Tn denotes a random variable with a Poisson P( r.7= 1 Pi) distribution. 

Proof. We define a joint distribution for Sn and Tn such that P(Sn *- Tn) = do(Sn' Tn), 

which is actually a maximal coupling for the total variation distance. 
Denote by N+ and N- the following subsets of N: 

N+ = {k;::: 0: P(Sn = k);:::P(Tn = k)}, 

If we further let 

P(Sn=k, Tn=)) 

min{P(Sn=k),P(Tn=k)}, k =);::: 0, 

1 d IP(Sn = k) - P(Tn = k)IIP(Sn =)) - P(Tn = ))1, k E N+, ) E N-, 

0, all other cases, 
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where 

d = do(Sn, Tn) = L (P(Sn = k) - P(Tn = k)) 
kEN+ 

= L (P('Fn =}) - P(Sn =})) > 0, 
jEN-

then Q defines the desired coupling. 

If (Sn' Tn) is distributed as above, it is easily verified that do(Sn' Tn) = P(Sn =1= Tn), 
and also 

(Xl (Xl 

d(J)(Sn' Tn):5E(b(ISn- Tnl))= L L b(lk-}I)P(Sn=k, Tn=}) 
. k=Oj=O 

(4.4) 

from which, by (Ml), (4.3) follows immediately. 0 

The form of L'1 J in (4.3) suggests that a semigroup approach as in the case of the 

total variation distance or the Kolmogorov distance (Deheuvels and Pfeifer 
(1986a,b, 1988)) should also be possible here. Unfortunately L'1 J is not a metric in 

the strict sense since b(O) = O. To overcome this difficulties, we shall therefore deal 

with b* instead of b, which is defined by 

b*(k) = r b(1)/M, k = 0, 
l b(k), k> 1, 

(4.5) 

so that SUPk~O b*(k+ 1)/b*(k) =M. 
Let I}* denote the Banach space of all b *-summable sequences g = (g(O), g(1), ... ), 

i.e. such that IgIJ* = I;=og(k)b*(k)< 00. For fEll (the usual Banach space of 
summable sequences) and g E I}*, define the convolution J * g by 

(Xl 

J*g(n)= L J(k)g(n-k), n=O,I, .... 
k=O 

In general, J * g need not belong to I}*. This is however always the case for J = el, 
where el denotes the sequence corresponding to a Dirac measure concentrated in 1. 

We also have 
(Xl 

Ilel * gIIJ*:5 L Ig(k)lb*(k + 1):5 MllgIIJ*' (4.6) 
k=O 

Let us now define the operator B: I}* ~/}* by 

Bg=el *g, gE/}*. (4.7) 
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Then, by (4.6), IIBII=supg*o{llBgIIJ*/llgIIJ*}:::;M, and hence A=B-J (where J 
denotes the identity operator) generates the Poisson convolution semigroup 
{etA: t;:::O}, i.e. 

(4.8) 

with 

Ile tA II:::; e-teIIBllt:::; e(M-I)I, t;::: 0. (4.9) 

By (4.3), we therefore have 

L1,(Sn' Tn) :5L1o,(Sn. Tn) = tD, (I + PkA)"O - exp(J'pkA )00110.. (4.10) 

where co = (1, 0, 0, ... ) E/)*. 

Lemma 7. For any gE/)*, we have 

(4.11) 

Proof. Let Uk = J + PkA and Vk = ePkA . Since 

kD, Uk- kD, Vk = kt [j+, U,(Uk - Vk) :if: fj]. (4.12) 

with IIJljII:::;e(M-I)PJ, IIUi ll:::;1+(M-1)Pi:::;e(M-I)Pi, we have 

IlkD, (/+PkA)g-expCt'pkA )gll., 
:5 kt, eXP(M-l) '~k p)ieP'Ag-(l+PkA)gll., 

:5eXP(M-l) J'pk) ~ IIA2gll., kt pl 

by standard arguments from semigroup theory (cf. Butzer and Behrens (1967)). 0 

Since here IIA 2co ll J * = <5*(0) + 2<5*(1) + <5*(2) :::;M- 1<5(1) + 2<5(1) + M<5(1) , the 
proof of Theorem 4 now follows from Lemmas 6 and 7. 0 

Theorem 4 says basically that, as long as <5(k) does not grow faster than geo­
metrically in k, and L]= I Pj remains bounded, we always have 
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From the lower bound estimations in Section 3.3, we see that this is indeed the 
exact rate which cannot be improved upon, except for the constants involved. 

Example 5. (a) Let b(u) = lul r
, r>O. Then M=2 r and hence, by Theorem 4, 

d
1J
)( L(Sn)' P(JI Pi) ):5 +(2' + 2 + 2- ')exp(2' - 1) il pj) JI P,'. (4.13) 

Observe that the bound given in (4.13) is far from being sharp (see e.g. (3.11». 
(b) Let b(u) = a lui, a> 1. Notice that in this case d(o) does not define a probabili­

ty metric since b(p, q) = b(lp - ql) violates (d1) and (d3). However Theorem 4 still 
applies and gives the bound: 

d(O)(L(Sn),P(.t Pi)):st(a+2+~)exp(a-1).t Pi).t pl. (4.14) 
I-I \: a J=I 1=1 

5. Statistical application for confidence intervals 

In this section, we consider several applications of the results of Section 2-4. 

5.1. Upper confidence bounds for the number of failures in an equipment 

Consider an equipment whose components have each a small probability of 
failure, and denote by Xi' i = 1, ... , n, the random variable taking value one if the 
i-th component has failed and zero otherwise. Let 0< 8< 1 be a given confidence 
level. We want to evaluate Nsuch that P(Sn?:.N):s8, where Sn=XI + ... +Xn' and 
under the assumptions that Pi = P(Xi = 1) is known for i = 1, ... ,n. 

In the following, we give a simple solution of this problem, based on coupling 
arguments. 

The first idea which comes in mind is to choose N to be the smallest integer such 
that P(N,A):s8-f., where 

(5.1) 

We will not discuss further approximations of P(N,A) and refer to Johnson and 
Kotz (1969) pp. 98-102 for a review of the topic. 

In (5.1), A =A(PI,"" Pn) is a function of Pb"" Pn' and f. is the approximation 
error. 

It turns out that the following simple choices of A and f. = 0 give a sharp solution. 

Proposition 6. Let A =- L7=llog(l-Pi)' Then P(Sn?:.N):sP(N,A) for all N?:.O. 
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Proof. Observe that Proposition 6 says that if 0 < () < 1 is fixed and if N is the 
smallest integer such that P(N, A) $. (), then P(S n ~ N) $. (). 

The proof of Proposition 6 is based on the fact (see Remark 1) that if Yb ... , Yn 

are independent Poisson random variables with E( Yj) = -log(l - Pi) and such that, 
for i = 1, ... , n, do(Xi, Yj) = P(Xi * Yj), then Yj~Xi a.s., and hence Tn = Y1 + ... + Yn~ 
Sn a.s. 0 

5.2. Lower confidence bounds for the number of failures in an equipment 

We use the same notation as in 5.1 and seek an integer M which guarantees that 
P(Sn$.M)$.() for a fixed O<()< 1. Since P(Sn=O)= TI7=1 (l-Pi)~ 1- r.7=IPi, we 
see that the problem is trivial for small values of r.7=IPi' Therefore we shall limit 
our investigations to the case where r.7= 1 PiftO. Deheuvels and Pfeifer (l986a) 
have shown that if r.7=IPi---+aE(0,00) and maxI:si:snPi---+O as n---+ oo , then, asymp­
totically as n ---+ 00, we have 

dO( L(Sn),P(J/.)) <do( L(Sn),P( -;t, [Og(1-P;))) 
if a>xo= 1.59, where Xo is the root of the equation x 3 + 3x- 2 = O. Because of this, 
we will limit ourselves in the sequel to the approximation of L(Sn) by P( r.7= 1 pJ. 

Next, we mention the results of Deheuvels and Pfeifer (l986b) concerning 
the evaluation of Kolmogorov's metric sUPk IP(Sn $. k) - P(Tn $. k)1 and of the 
Fortet-Mourier metric d l ( • , • ). It turns out that (as far as leading terms are con­
cerned) the value of Kolmogorov's metric for L(Sn) and P(r.7=IPi) is one half of 
do(L(Sn),P(r.7=IPi))' For the Fortet-Mourier metric, if r.7=IPi---+aE(0,00) and 
maxI:Si:snPi---+O as n---+ 00, they have proved also that 

dl(L(Sn),P( t Pi))-~e-a t pl as n---+oo. 
i=1 [a]! i=1 

Such evaluations can be used precise the bounds presented in the sequel. For sake 
of concision, we shall limit ourselves to simple estimates. Let 

M Am 
Q(M,A)= L -e-A

, M~O, 
m=O m! 

Q(M,A)=O, M<O. (5.2) 

Proposition 7. Let A = r. 7=1 Pi and let, for some y ~ 0, d y = d y (L(Sn)' P( r. 7= 1 pJ) be 
defined as in (2.12) and (2.15). Let 0< ()< 1 be fixed, and assume that k~ 1 is an 
integer such that 

k- y d:;ax(y, I) < (). 

Furthermore, let M be the largest integer such that 

Q(M, A) $. () - k- y d:?ax(y, I). 

(5.3) 

(5.4) 
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Then, we have 

(5.5) 

Proof. By Lemma 5, there exists Tn following a Poisson P( r. 7=1 Pi) distribution, 
and such that E(ISn - Tn I Y) = d;ax(y, I). This and Markov's inequality imply 

P(ISn - Tn I> k) = P(ISn - Tn I ~ k + I) ~ k- y d;ax(y, I). 

By (5.6), we have 

P(Sn~M - k+ I)~P(Tn~M) + P(ISn - Tn I ~k+ 1) 

~ Q(M, A) + k- y d;ax(y, I), 

which suffices for proof. D 

(5.6) 

Example 6. The aim of this example is to show that the bounds given in (5.5) may 
improve upon the case y = 0, corresponding to the total variation distance. For this 
sake, we shall assume that n is so large and maxI ~i~nPi is so small, that, for 
r.7= I Pi = a, we may use the asymptotic approximations: 

_ 1 [a a - I (a - a) a fJ - I (fJ - a)] _ a n 2 n 2 
dO(L(Sn),P(a»- -2 - e L Pi =Ao(a) L Pi' 

a! fJ! i=1 i=1 

where a=[a+t+(a+t)ll2] and fJ=[a+t-(a+t)II2], and 

ala) n n 

dl(L(Sn),P(a»=-e- a L pl=AI(a) L pl. 
[a]! i= I i= I 

It is straightforward from Proposition 7 that for y = 0, we need assume that 

n 

8>do(L(Sn),P(A» =Ao(a) L pl. (5.7) 
i=1 

Take a=4. We have Ao(a)=0.1254, and A I(a)=0.1954. For k=2, we have 
evidently 

n n 

k-Idl =0.0977 L pl<do=0.1254 L P? 
i=1 i=1 

It follows that by using y = 1, k = 2, we may obtain confidence intervals for Sn 
for smaller values of 8 than those which satisfy (5.7). 

Example 7. Consider the case where a = r.7= I Pi is large, for instance a = 500, and 
r.7= I pl is small (say 25). 

Using again the asymptotic evaluations in Deheuvels and Pfeifer (l986a,b), we see 
that, for a~ 00, 

(5.8) 
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1 ) n ] -1/2 n 

d 1(L(Sn),P(a»-~ li~lPi i~lP?' (5.9) 

while (3.21) gives an upper bound 

n 

di(L(Sn),P(a»~ L pl. (5.10) 
i=l 

Suppose that our problem consists in finding an M such that P(Sn ~M) ~ 1 %. 
We see that, if we take (5.8) as an equality (as a first order approximation), we get 

do (L(Sn ), P(a» - 1.210,10, 

which renders the problem unsolvable by the sole use of do. On the other hand, we 
see from (5.10) that (for instance) if we take k=75, we have 

(5.11) 

We will obtain a solution to our problem by choosing an M such that Q(M, 500) ~ 
0.55% and using the inequality P(Sn~M-75)~ 1%. 

In spite of the fact that bounds such as above may appear as very crude, the only 
alternative (aside from explicit computations) which can be offered to match such 
evaluations are moment inequalities based on the p/s which yield even weaker 
estimates. We will not discuss here normal approximations noting only that in the 
range of interest, the approximation of L(Sn) by a normal distribution is usually 
worse than what is obtained by Poisson approximations. 

5.3. Two-sided bounds 

We offer here a general statement enabling to use any of the estimates obtained 
in the preceding sections. 

Proposition 8. Let J(n) be non-negative and non-decreasing in n = 0, 1, .... For any 
~,( E X, define d(J)(~, 0 = d(J)(L(~),L(O) = infC(~,o E(J(I~ - (I). Let 0< e< 1 be fix­
ed, and assume that k ~ 1 is an integer such that 

(5.12) 

Furthermore, let P(N,A) and Q(N,A) be as in (5.1) and (5.2). Let A = r.7= 1 Pi, 
and define N (resp. M) to be the largest (resp. smallest) integer such that 

P(N,A)~+{e-£} and Q(M,A)~+{e-£}. (5.13) 

Then 

P(M-k+ 1 <Sn<N+k-l)~ I-e. (5.14) 
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Proof. The proof is identical to the proof of Proposition 7. Details are omitted. D 
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