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Summary. We present a simple joint strong approximation for the logar-
ithms of record and inter-record times from an exchangeable sequence,
including an exact estimation for the rate of convergence in terms of upper
and lower class functions of a Wiener process. The approach chosen here
allows for simple proofs of exact and asymptotic (joint) results for record
and inter-record times, such as the Law of Large Numbers (LLN), Central
Limit Theorem (CLT) and Law of the Iterated Logarithm (LIL), and
others.

I. Introduction

Let {X,;n=1} be an iid. sequence of random variables (r.v.’s) defined on
some probability space (@, o7, P) with a c.d.f. F such that either F(x)<1, all x,
or the right end x_=sup{xeR; F(x)<1} is not an atom of F. Then the
associated record times {U,; n=0} and inter-record times {4,;n=0} given by

Ag=1, A, =inf{k;X, ,,>X,} where U= Y 4,, n20, (L1)

k=0
are a.s. well-defined (see Shorrock [10]). A large number of exact and asymp-
totic results for these sequences has been given in the literature, e.g. by Rényi
[8] who stated that the record times form a homogeneous Markov chain with
transition probabilities
J

—J o 1gj > 1.2
k1)’ 1gj<k, nz0, (1.2)

P(U, . =k|U,=))=

independent of F, in case that F is continuous (which we shall assume in what
follows). He also proved the LLN, CLT and LIL for record times, i.e.

1
—loglU,—»1 as. (n— o) (L.3)
n ,
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L(1og U—n—2540,1) (n— o) (1.4)
n

.l/_

log U, —
OB | s (1.5)

1/ 2nloglogn a

For the inter-record time sequence it was shown by Shorrock [10] that given
the record value sequence {X, ;n=0}, the inter-record times are conditionally
independent and geometrically distributed, i.e.

limsup +

P4, =k|X,)={1-F(Xy )} F*"'(Xy) as, k=1, n20, (1.6)

which is intuitively clear by (1.1) since the record times U, are stopping times
for the original sequence {X,;n=1}. From this observation he derived

1
;logAn—d as. (n—o0) (L.7)
1 @
logdy=n) o N D) (1) (18)
n
log4, —
lim sup + o84, " =1 as. (1.9)

1/ 2nloglogn B

(these results have been obtained previously by Neuts [5] and Strawderman
and Holmes [12], using different techniques.) The fact that although we have

U,= Z 4,, n=0, the same normalizing constants appear in these limit laws for
k=1

both sequences makes it clear that e.g. the normal approximation (1.4) and

(1.8) cannot be very powerful for small values of n. This was already pointed

out by Neuts [5] who suggested that n should be at least as large as 1000 in

order to obtain satisfactory results. This will also be discussed in this paper

when asymptotic evaluations for log U, —log 4, are investigated.

Shorrock [10] also pointed out that the sequence {log U,; n=0} should be
close to a Poisson point process in some sense (see also Resnick [9]), explain-
ing for the limit relations (1.3) to (1.5). A constructive approach to this
question was made by Williams [15] and Westcott [14] who showed that if
{Y;nz1} is an iid. sequence of exponentially distributed r.v.’s with unit
mean, then the sequence {U*; n=0} defined recursively by

Ugr=1, U* =]U*xe"1[, nx0, (1.10)

where ].[ denotes the nearest integer not less than the real number specified, is
a Markov chain with the same distribution as {U,; n=0}, and

IogUn*=iYk+0(1) as. (n— o) (L.11)

k=1
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For a refinement of this, see [7]. In [6] it was also shown that

. 2
E(logU)=n+1—y+0Q2""), Vm@w[@=n+1—%ﬁ%ﬂf2*ﬁ
, (1.12)
E(logd,)=n—y+0®m2~"), Var(log4,) =n+%—+ O(n*2="), n- oo,

where y=0.577216 denotes Euler’s constant and Var means variance. An
intuitive explanation for the last two relations is due to the strong approxima-
tion approach by Deheuvels [1, 2] who proved, starting with relation (1.6), that
on the same probability space (@, o/, P) (possibly after enlarging) there exists a
Poisson point process {T,;n=1} with unit rate and an iid. sequence {Y,:
n=1} of unit mean exponential r.v.’s, independent from the Poisson process,
such that

logd,=logY,+ T, +0(l) as. (n— ) (1.13)

Here, —logY, is doubly exponentially distributed with mean y and variance
%. In fact, T,= —log(1 —F(Xy, ), n=1, as can be seen from Deheuvels’

construction. The rate of convergence in (1.13) was made precise in [7] where
it was shown that

1
logd,=log Y, +T,+0 (exp(—n+nH( ))) as. (n—o0) (1.14)

n
1 . . .
where tH (?) belongs to the upper class of a Wiener process, ie. H(t) is a

positive function defined in some positive neighbourhood of the origin such
that H(t)1 and ¢~ "2 H(t) |, and the integral

I= Ojo t=32 H(t)exp(—H?(t)/2t)dt (1.15)

0+

converges. It was also shown that this rate result cannot be extended to lower
class functions (i.e. H as above with I being divergent), not even if o(.) is
replaced by O(.).

Deheuvels [1] also gave a strong approximation result for record times,
based on the one derived for the inter-record times, i.e., with the notation of
(1.13),

U~ Y Ye'
limsup+——==%__ =3-12 a5, (1.16)

V2nloglogn

where now the index range for the sequences involved is extended to Z, and
also a corresponding CLT. It was also proved that this strong approximation
result is best possible if the construction based on (1.6) is used.

It is the aim of the present paper to develop a corresponding strong
approximation (on the same probability space) based on William’s approach
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(1.10), even valid for exchangeable sequences {X,, n>1}, which simplifies (1.16)
and at the same time allows for a joint strong approximation of record and
inter-record times. Besides the limit laws mentioned above, also Galambos’ and
Seneta’s [3] results for the iid. case are easily reobtained, and some others,
including exact estimations for the rate of convergence as in (1.14).

In fact, it is easy to see that if {X,; n=1} is an exchangeable sequence and
the probability of ties is zero (i.e. P(X,=X,)=0), then again record and inter-
record times can be defined as in (1.1), likewise for the record values {X U,
n=0}. Namely, by de Finetti’s theorem, we may assume that there exists a real
rv. A on (£, &, P) such that conditionally on A=/eR, {X,; n=1} is an iid.
sequence with c.d.f. F;, say. Now since ties occur with probability zero only we
must have P{X,=X,|A=24)=0 P%as. which in turn implies that F, is con-
tinuous for P“-almost all 4, ie. given A=4, {U,; n=0} is a Markov chain with
transition probabilities given by (1.2), independent of A, for P%-almost all A
Hence under exchangeability, if ties occur with probability zero only, {U,;
n20} and {4,; n=20} are as. well defined, the record times forming a homo-
geneous Markov chain with transition probabilities given by (1.2) as in the i.i.d.
case.

Note that the condition of zero probabilities for ties can in general not be
replaced by a continuity assumption on the marginal distribution (as in the
iid. case) as can be seen by the exchangeable sequence {X,; n=1} where
X,=X, for all n=2. Of course, in the case of independence, these two con-
ditions coincide.

As has become obvious from the preceding remarks, all relevant infor-
mation on record and inter-record times is contained in the Markov chain
with transition probabilities given by (1.2). It will therefore be necessary to deal
with strong approximation techniques for Markov chains as developed in the
following section.

II. Strong Approximation for Markov Chains

Theorem 1. Let {S,; n=0} be a real-valued homogeneous Markov chain on the
probability space (Q, o/, P) with S,=constant a.s. and regular transition probabil-
ities (which here always exist). Let further denote F(.|.) the corresponding
conditional c.df. Then there exists an iid. sequence {V,; n=1} of uniformly
%[0, 1]-distributed r.v’s on the same probability space (eventually after en-
larging ) such that

S, 1=F'(V,,,IS) as. foral nz0 (2.1)
where F~'(v|.)=inf{z|F(z|.)=v}, 0<v <1 denotes the pseudo-inverse of F(.].).

Proof. Let {W,; n=1} be an iid. sequence of #[0,1]-distributed r.v.’s on
(2, o/, P) independent of {S,; n=0} (which eventually exists after enlarging the
probability space). Let further denote

F_ (z].)=limF(z—hl), zeR. 22)
hlO
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Define
V

n+1

—(1=W,, ) F(S,, |S)+ W, F_(S,,,1S,).  nZ0. 2.3)

Then {V,; n=1} is an iid. sequence of #[0,1]-distributed r.v’s on (£, .%/, P)
since by construction, for all n=0,

n

PreVme (S, 8,0 0) ® (Si 1180 F(Syy41S)]as. (24)

(where in the degenerate case, #[z,z] is to be interpreted as the Dirac measure
concentrated in zeR), hence by integration,

PYVe-Vesd = ) [0,1]  for all n=0. (2.5)
k=0
Now

S, =F~'(V,.,IS) iff F_(S,,,|S)<V,,\<F(,,,IS,) as.  (26)

n+1—

for all n=0 which by (2.3) holds a.s. This completes the proof.

A straightforward generalization to non-homogeneous or higher-dimension-
al Markov chains is obvious from the preceding proof but will be omitted here.
In the case of record times, we have, by (1.2),

F(klj)=1—7,  1=jsk, @7
hence by (2.3),
U, U,
1-— — W, — =0 2.
( n+1) Un+1+ n+1 Un+1 1 n=v, ( 8)

forms an iid. %[0, 1]-distributed sequence (here we have used the fact that
with V also 1—V is %[0, 1]-distributed). Further, letting ¥, = —logV,, n21, we
obtain an iid. sequence of unit mean exponential r.v’s. Theorem 1 thus
translates into the following result.

Corollary 1. Without loss of generality, there exists an i.id. sequence {Y,; n=1}
on the same probability space where {U,; n=0} is defined which is exponentially
distributed with unit mean such that

U, =10, [ as. forall n20 2.9)
Un
U,,“—U,,eY"H:mHW——V;:i as. for all nz0 (2.10)
where Y, = —logV, . ,and V, , W, asin(2.8)

W+1
AL S >
U 1) as. forall nZ0 (2.11)

n+1"

lOg n+1 lOgU n+1_log (1+

U
] U“[ Jer [ as. forall n20, 2.12)

n

providing an i.i.d. sequence with c.d.f. given by F(.|1) with F(.|.) as in (2.7).
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Relation (2.12) gives a simple proof for the main result in Galambos and
Seneta [3]. It should be pointed out here that for all n>0, Y+1 and V, | are
independent from (U,,...,U,) as can be seen from the recursive structure in
(2.9).

Relation (2.11) will be the key for a joint strong approximation for the
logarithms of record and inter-record times. This will be worked out in more
detail in the following section.

IIL Joint Strong Approximation for Record and Inter-Record Times

Theorem 2. Without loss of generality, there exists on the same probability space
where {U,; n20} is defined a unit-rate Poisson point process {T,; n=1} and a
non-negative r.v. Z possessing all positive moments with mean E(Z)=1—7v such
that

Z and {(T, —n)/ﬂ; n21} are asymptotically independent ;

(3.1
1
logU,=Z+T,+0 (exp (—n+nH (;))) a.s. for n— oo,
1
logd4,=Z+T,+log(l —exp(T,_,—T))+o (exp (—n+nH (;))) as.
for n— oo, (3.2)

1
where again t H (E) belongs to the upper class of a Wiener process. The rate

result cannot be improved to lower class functions, not even if o(.) is replaced
by O(.).

Proof. Summing the equalities in (2.11) we obtain

n n W
logU,,— Y Y, Z og (1-1————1 ) as., n0. (3.3)
k=0 k= Up1 —1
Now let
n o W/k
=Y fornxl, Z=Zlog(1+ ) (3.4)
k=1 k=1 Uk_l

From relation (2.8) we see that

Z tog (1+Uk+1) é;i

k+1

(3.5)

with 1/U,<exp(—T,) as. from which it follows that Z and the normalized

Poisson process {(T, —n)/ﬂ n=1} are asymptotically independent. Also, re-
lation (3.5) shows that the rate of convergence in (3.2) is exactly determined by
the tail series

< i exp(—T,) as. (3.6)
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from which the o(.)-result follows as in (7), Theorem 2. On the other hand,

% =exp(log W, —log Un) =exp(O(logn)—T,)) as. (n—o0) (3.7

n

which shows that the rate result cannot be improved to lower class functions
(cf. the proof of Theorem 4 in Deheuvels [2]). For the proof of the second
statement in (3.2) note that by (2.10), we have

4 U, W, ., +o(1)

'ij:lz"T:l—l:eY"“—lnL"T as. (n— o), (3.8)

hence
log4,,,—logU,=Y,,  +log(l—e ""*)+o0(e”) as. (n—ow) (39)

with 1 <c<2 arbitrary (but fixed).

The fact that E(Z)=1—y follows from (1.12) and (3.5) by the Dominated
Convergence Theorem. This proves Theorem 2 completely.

It is interesting to note that in (3.2), the sequence {—log(l —exp(T,_, —T));
n=2} is iid. following an exponential distribution with unit mean, which is of
order O(logn) a.s. for n— oo.

Theorem 2 gives a unified proof of all the limit relations (1.3) to (1.5) and
(1.7) to (1.9), even for the exchangeable case. It can also be used to give
complete characterizations for the upper and lower class of the record and
inter-record times as in Deheuvels (2), which in the light of (3.2) are the same
as those for a unit rate Poisson process. Some other consequences are listed
below.

Corollary 2. {logU,—log4,; n=1} is asymptotically iid. with unit-
mean exponential distribution; (3.10)

{log4,—logU,_,; n=1} is asymptotically i.id., the asymptotic distribu-

tion being the same as that of W=Y +log(l —e~Y) where Y (and hence

also —log(1 —e™")) follows a unit-mean exponential distribution, giving
2

E(W)=0 and Var(W)=% (in fact, also W=U —V where U and V are

independent doubly exponentially distributed r.v.’s, implying that W fol-
lows a logistic distribution with P(W <x)=(1+e~%)~!, xeR); (3.11)

P(U,>n'*¢4,i0)=0, PU>n'"%4,i0)=1 for every 0<e<l; (3.12)

1
P(4,>sU,_,)=P(logU,—log4,<log(1+ 1/s))—>m for n—>oo and
every s >0 (Galambos and Seneta [3]); (3.13)

there is no sequence {K,; n=1} of real constants such that U,/K, or
4,/K, follows some non-degenerate limit law for n— oo (Shorrock [11],
Tata [13]); (3.14)
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{U,/U,, 1; n=0} is asymptotically iid. with %[0,1] distribution (Shor-

rock [11]; Tata [13]); (3.15)
U

{Iog—z;—’f; kgl} is — up to an as. error of magnitude o (exp (—n

n

1
+nH (7))) - uniformly close to a unit rate Poisson point process. (3.16)
n .

Of course, many more of such limit relations can immediately be derived from
Theorem 2.

Finally, relations (3.10) and (3.11) show that with respect to the normal
approximation of record and inter-record times given in (1.4) and (1.8), we have

logU,—n logd,—n
Vn Vn

which cannot be improved upon. This explains why for small or moderate
values of n this approximation cannot give satisfactory results.

O(n=Y%logn) as. (n— o) (3.17)

Concluding remarks. Obviously, the Poisson processes used in Deheuvel’s repre-
sentation (1.13) and in our approach (3.2) are not the same, hence Theorem 2
does not give joint results for record times and record values as in (1.16).
However, a possible connection between these two representations can be seen
as follows.

Let {E,; n=1} be the iid. sequence of unit-mean exponential r.v.’s forming
the increments of the Poisson point process used in (3.2). Starting with (1.13),
we obtain

logd,,, —logd,=T, | —T,+{log¥,, ~log¥,}

<

3.18
= —log(1 —e"E")+{En+1+Iog(1 —e~Enr1)) ( )

since T, , —T, and {log Y,, , —log Y} are independent and by (3.11),
logy, ,—log¥, £ E,. +log(l—e ),

following a logistic distribution. But the right hand side of (3.18) is just
(asymptotically) the increment of the logarithmic inter-record time sequence
derived from the representation (3.2). In the light of relation (3.18) it seems
impossible to establish a direct (strong) relationship between the different
Poisson processes involved, unless constructions as in (1.16) are considered.

Acknowledgements. 1 would like to thank P. Deheuvels for some stimulating discussions in this
area of extremal statistics.
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