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ABSTRACT 

A NOTE ON STABILITY OF MAXIMA 

AND RECORDS OF AN 110 SEQUENCE 

Ursula GATHER and Dietmar PFEIFER 

An iid sequence {Xn;nE J.l} is called-max-stable if there is a se­

quence of constants {An;n E J.l} sucht that Xn:n-AnJ;.. 0, n~oo (X i : n de­

notes the i-th smallest value among X1, ••• ,Xn). We call {Xn;nE J.l} 

D-max-stable if Xn:n-Xn-l:n~ U, n~oo. Correspondingly, record-stabi­

lity and D-record-stability can be defined by passing over to the 

strictly increasing subsequence of the successive maxima. While a well-

known theorem of Geffroy (1958) states that max-stability and D-max-

stability are equivalent, this iS'no longer true for record-stability 

as was implicitly pointed out by Goldie (1981). In this paper, the 

relationship between these four stability concepts is investigated fur-

ther. Especially, it is shown that D-max-stability and D-record-sta­

bility are different concepts in that it is possible to maintain the 

latter property by stretching the observations, while the property of 

D-max-stability may be lost. 

AMS 1980 Subject Classification. 60F05, 60K99· 
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1. INTRODUCTION 

Let {X ; nE ~} be an iid sequence of random variables with cdf F 
n 

such F(x)-<l for alle xE R. To avoid complications, we also as-

sume that F is continuous. (The problem of max-stability in the dis­

crete case is e.g. discussed in Anderson (1970) and Gather and Mathar 

(1983).) Let further denote \:n<; •.• ...;Xn:n the order statistics 

of Xl"." Xn ' n E ~ , and 

( 1.1) U n+l 

the sequence of record times (which is a.s. well-defined under the 

assumptions above; cf. Shorrock (1972)). The record sequence 

{Xu; n>O} then is precisely the strictly increasing subsequence of 
n 

{X ; n E ~}. Note that we always have 'n:n 

(1. 2) 

but usually the sequence {Xn:n-Xn_l:n; n>2} contains more values than 

the sequence {Xu -Xu ; nE ~}. For instance, if Xu <Xu +l<XU ' n n-l n-l n n 
then the difference X - X is not contained in the Un+l:Un+l Un:Un+l 

record increments sequence. 

Moreover, as will be shown in this paper, the asymptotic behaviour 

of maxima, records and their increments are not necessari~y the same. 

We call {X; nE~} max-stable (in probability) iff there exists a se-
n 

quence {A ; n E ~} of constants such that X -A ~ 0, n -+ 00, and O-n n:n n 

max-stable (in probability) iff X -X ~O, n-+ oo • Corresponding-n:n n-l:n 

ly, {X; nE~} is called record-stable (in probability) iff for a 
n 

suitable sequence {B; nE~} of constants we have Xu -B ~O, n-+ oo , 
n n n 

and D-record-stable (in probability) iff XUn-XUn_l~O. 
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Gnedenko (1943) and Geffroy (1958) have shown that in case of max-

stability, we have 

(1. 3) 

where F-1(y)::: inf{x;F(x»y}, O<y< 1, while in case of record-stabi-

1 i ty, 

( 1.4) -1 -n B "",F (l-e ), n-+ oo , 
n 

(Resnick (1973)). Resnick also proved that an equivalent condition for 

record-stability is 

(I) 1 i m _G",,-:( x::;+::;::£:::) -::::::;-G ("-x-=-) _ 00 

x-+oo V G (x+d 
for all £>0 where G::: -log(l-F). 

On the other hand, Geffroy showed that max- and D-max-stabi1ity are 

equivalent, a necessary and sufficient condition for both being 

(II) lim 1- F(x+£) ::: 0 for all £>0 
x-+oo 1 - F( x ) 

(even without the assumption of continuity for F). 

It is easy to see that (I) implies (II); however, in general, re­

cord-stability and D-record-stability are no longer equivalent. A 

necessary and sufficient condition for D-record-stability (Goldie 

( 1981 ) ) is 

(III) 1 · 1 fG-
1

(x+aIX) 1-F(u+£)dG( )-0 f 11 
1 mx-+oo IX -1 1-F ( u ) u - . or a 

x G (x) 
£,a> 0 

which shows that (II) is (only) a sufficient condition for (III). Of 

course, (III) implies that 

(IV) 1 - F(x+£) 
lim inf 1- F(x) 0 for all £>0. 

x-+oo 
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It is the aim of this paper to show that D-max- and D-record-stabi-

lity generally are different concepts, more precisely, that condition 

(III) is generally a weaker condition than (II). 

2. D-MAX-STABILITY AND D-RECORD-STABILITY 

Summarizing the implications from the introduction we obtain 

(I) ~ record-stability ~ max-stability ~ (II) ~ 

D-max-stability ~ D-record-stability ~ (III) ~. (IV) • 

In general, conditions (I) and (II) are not equivalent as can be 

seen from the choi~e 

{ 
0

1- exp(-xa), x>- 0 
( 2. 1 ) F ( x ) for s orne a;> 1 

, x -< 0 

Here {X ;n E ~} is (D-)max-stable for all a> 1, whereas it is record­
n 

stable only for a>2 (Resnick (1973». Note that for a= 1, condi-

tion (IV) is violated, reflecting the fact that in this case the re-

cord sequence has iid exponentially distributed increments, such that 

D-record-stability is impossible~ 

However, if we assume that l-F is log-concave (i.e. G is convex) 

in some infinite interval [a,oo), then the ratio [l-F(x+E:)] / [l-F(x)] 

is decreasing in x in [a,oo) for every £>0 (Mathar (1981 ». Hence 

(IV) implies (II) such that in this case, (D-)max-stability and D-re­

cord-stability are indeed equivalent (actually, in (2.1), we have 

G(x) = xa which is convex for every a> 1 in [0,00». 
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In spite of this observation, we shall show in the sequel that a 

suitable stretching of observations may affect the (D-)max-stability 

of {X ;n E fi}, without affecting the D-record-stability, thus implying 
n 

that D-max- and D-record-stability are in fact different concepts, 

We shall consider the following class of cdf's F: 

(V) F has. for x large enough, a derivative f(x), and 

lim f(x) 
X~ 1-F(x} 

For such a cdf F, the corresponding integrated hazard-rate G is also 

differentiable for x large enough, and (V) is equivalent to 

(2.2) 1 i mx~ G' (x) 

Distributions with (V) have been considered before by von Mises 

(1936) and Geffroy (1958); the latter showed that (V) implies (II), 

i.e, (D-)max-stability~ Moreover. he pointed out that every F with (II) 

is 'associated' to a cdf Fl satisfying (V) in the sense that for all 

F with (II) there exists Fl with (V) and a strictly increasing se­

quence {x ;nEfi} with x l-x +0, n+ oo such that 
n n+ n 

Hence, the cdf's satisfying (V) are the 'smoothly max-stable' cdf's 

satisfying (11)& 

The following result will be the key for a more detailed investiga­

tion of the relationship between (D-)max- and D-record-stability. 

Lemma 2.1: If a cdf F satisfies (V), then 

(2.4) lim ~ {G-1(x+arx) - G-1(x)} 0 for all a>O. 
x~ v'X 
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Proof: Since F is a cdf, G as well as G- 1 must be (weakly) increasing. 

Moreover, by the mean-value theorem, there exists for all x large 

enough a real number y(x) with x<:y(x)..;;;;x + aIX and 

(2.5) G - 1 (x +a IX) - G - 1 (x ) 

aIX 

Since with x-+oo we have y(x)-+oo, thus G- 1 (y(x))-+oo, hence the re-

sult follows by (2.2). & 

Lemma 2.2: Let {X ;n E ~} be a I smooth ly max-stable I (and hence (D-) 
n 

max- and D-record-stable) sequence, i.e. F fulfills (V). Define 

(2.6) Y = X + [X D , n E ~ 
n n n 

where [eD denotes the integer part. Then {Y ;n E ~} is no longer (0-) 
n 

max-stable but still O-record-stable. 

Proof: Let F*= 1-exp(-G*) denote the cdf of the V-sequence. Then 

(2.7) { 
G(x-k), 2k=<x<:2k+1 

G* (x) = 
G(k+l),2k+l<:x=<2(k+l) 

From here we see that 

, k E 7/.+ , x> a . 

(2.8) . 1-F*(X+E) l-F*(x+E) 
11m sup 1-F*{x) = 1, lim inf 1-F*{x)· = 0, all E>O, 

X-+oo X-+oo 

hence {V ;n E ~} cannot be (0- )max-stable. 
n 

To prove O-record-stability for the V-sequence, observe that for 

sufficiently large y we have 

(2.9) hence 

(2.10) 
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Wi thout loss of general i ty, 1 et 0 -< £ -< 1, and 

(2.11) ( ) {
1 - F(u+£) -1()} rx £ = sup l-F(u) ; u;>G x/2 

For abbreviation, put 

(2. 12) 

Then, for sufficiently large x, we have 

(2.13) 

say. 

(2. 14) 

1 IO~ 1 - F* (u+£) dG* ( u) = 
"IX u * 1 - F* ( u ) x 

,00 1 1-F*(u+£) 
Lk=O IX J[2k,2k+l-£]n[U*,o*] l-F*{u) dG*(u) + 

x x 

LOO 1 J 1-F*(u+£) dG*(u) =: 1+ J , 
k=O Jx [2k+l-£,2k+l]n[u*,o*] l-F*{u) . x x 

But by assumption, for sufficiently large x, 

1 o~ 
I <: r (£) r.; J * dG * (u ) <; a r (£) -+ 0, x -+ ()() 

x vx Ux x 

for all a>O. Also, for all k E I'l , 

(2.15) J
2k+l 1 - F*(u+£) k+l G(u) 
2k+l-£ 1- F*(u) dG*(u) {1-F(k+1)} Jk+1-£ e dG(u)= 

1-F(k+1) 
1 - 1- F(k+1-£) ...; 1 , 

hence, for x sufficiently large, we have 

(2.16) J -< ~ {1 + ~(o* - u*)} -< ~ {l+ 0 - u } Ix c.. x x IX 2 x x 

by Lemma 2.1. I5l 
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REMARK 

a) The foregoing result shows that D-record-stability is not equivalent 

to a mere tail-property of the underlying distribution as are con­

ditions (I), (II) or (IV) unless the cdf F is e.g. log-concave. 

Without further conditions on F, D-record-stability is in general 

a weaker property than (D-)max-stability. 

b) Corresponding to the weaker notions of relative max- and relative 

D-max-stabi 1 i ty defi ned by X IC ~ 1, n -+ 00 for a suitable se-n:n n 

quence of constants {Cn;nE ~}, and Xn:n/Xn_l:n~ 1, n-+ oo , resp. 

{cf. Gnedenko (1943), Geffroy (1958)), we can treat relative record-

and D-record-stability analogously by considering the random varia­

bles 

{
log X I i f X > 1 

Y = n n 

nO, otherwise 

1-F(x+d In this case, the ratios 1-F{x) have simply to be replaced by the 
1-F(yx) . 

ratios 1-F(x) wlth y> 1 • 
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