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Abstrac~. The intention of the paper is to review various techniques 

for the strong approximation of record times, inter-record times and 

record values (essentially by Poisson and Wiener processes) which have 

been cl)nsidered in the recent years by different authors. Besides the 

iid case, we also discuss which of the methods described are suited 

to treat corresponding problems in more general (non-iid) settings. 

1. Introduction. 

Let {Xn;n ~ l} be an iid sequence of random variables (r.v. IS) on some 

probability space (~,A,P), with a joint continuous cumulative distri­

bution function F. Record times {Un;n ~ O} , inter-record times {6
n

;n ~ O} 

and record values {XU ;n ~ O} for this sequence are recursively (and by 
n 

our assumptions, a.s. well-)defined by 

(1) inf {k; X
k 

> Xu }, 6 = U - U 
n+1 n+1 n 

(n~ 0). 
n 

These sequences, related to the partial extremes of the original se­

quence, have been of increasing interest since their first exploration 

by Chandler (1952). Several survey articles have been published since 

then, e.g. by Glick (1978) or Nevzorov (1988), to mention some. 

Besides structural properties of these sequences, asymptotic features 

(in various meanings) have been the subject of research very early, 

pointing out relationships with the law of large numbers, the central 

limit theorem and the law of the iterated logarithm for iid sequen­

ces of r.v. IS. In particular, it was shown by several authors that 

(2 ) 1 Z -+ 1 a.s. (n -+ (0) 
n n 

/ Z - n 
n-

1 
2(Z -n)!1 N(O,l) and lim ~ui n =±la.s. 

n In /2n log log n 
D 

where -+ means convergence in distribution, and Zn may be replaced by 

any of the r.v.'s log U , log 6 or -log(1-F(XU », n ~ 1. (For further n n -
details, c.f. e.g. Renyi (1962), Neuts (1967), n Strawderman and Holmes 

(1970), and Shorrock (1972a, 1972b).) Due to the fact that for the 

proofs of the forementioned results, mostly different techniques were 

used, tailored to the specific situation, there was a need for a uni­

fying approach explaining the similarity of the asymptotic behaviour 

of the three different random sequences in (2). It turned out that 

certain strong approximation techniques in the spirit of Komlos, Major 
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and Tusnady (1976) were suitable tools for such an explanation. Their 

main result states that under certain regularity conditions (existence 

of exponentialnmoments) it is possible to approximate a partial sum 

process S L ~k (with an iid sequence {~k}) by a partial sum 
n k=l 

n 
process Tn L nk where {n k } is a sequence of iid normally distributed 

k=l 
r.v.'s with the s~me mean and variance as the {~k} sequence, on the 

same probability space (if rich enough to carry sufficiently many iid 

sequences) such that 

(3) (n + 00). 

In this paper, such techniques for the strong approximation of record 

times, inter-record times and record values are reviewed. The possibi­

lity of extending some of the results to more general than iid cases 

is also discussed. 

However, before doing so, it will be necessary to expose some well­

known structural properties of the sequences involved. 

Theorem 1. (Renyi (1962» Under the conditions specified above, the 

record time sequence {Un} forms a homogeneous Markov chain (Me) with 

transition probabilities given by 

(4) P(U > k I U = j) = i 
n+1 n k' 

~j~k, n;;;O. 

Theorem 2. (Shorrock (1972a, 1972b» The inter-record time sequence 

{~n} is conditionally independent given the sequence of record values, 

with a (conditional) geometric distribution of the form 

(5 ) P(~ = k I Xu ) = {l-F(XU )}F
k

-
1

(X
U 

) 
n n-1 n-1 n-1 

a. s. (n,k ;;; 1). 

Furthermore, the sequence {-log(l-F(X
U 

»} forms the arrival time 
n 

sequence of a unit rate Poisson process (i.e., has independent expo­

nentially distributed increments with unit mean). 

From Theorem 2 it follows immediately that the record value sequence 

itself forms the arrival time sequence of such a Poisson process if 

the underlying distribution is exponential with unit mean. 

In what follows we shall discuss in more detail the different strong 

approximation approaches for record times, inter-record times and 

record values, both individually and also jointly. 



52 

2. The conditional independence approach. 

Deheuvels (1982, 1983) proved that it is possible to define an iid 

sequence {Yn} on the same probability space (st,A,P) (if rich enough) 

such that 

(6) D. 
n 

with S 
n 

-log(l-F(X
U 

», n ~ 1, 
n-l 

where {Yn} is exponentially distributed with unit mean, and independent 

of the record value sequence. This reflects precisely the conditional 

independence property of Theorem 2 (note that a geometrically distri­

buted r.v. can be generated from an exponentially distributed one by 

appropriate rounding off). By a suitable Taylor expansion, relation (6) 

leads to relation 

(7 ) a. s. (n -+ co) 

which in turn proves relation (2) for inter-record times via (3), joint­

ly with the transformed record value sequence (i.e. with the same 

strong approximand {Tn} from the Komlos-Major-Tusnady construction). 

This is due to the fact that by a simple Borel-Cantelli argument, 

(8) log Y
n 

= O(log n) a. s. (n -+ co). 

(A slightly refined expansion of (7) is given in Pfeifer (1985).) 

Unfortunately, this approach does not immediately lead to a nice 

strong approximation of record times from where a direct proof of (2) 

could be read off easily (cf. Deheuvels (1982». The following approach 

provides such an approximation. 

3. The Markov chain approach. 

This approach is based on Theorem 1, expanding ideas of Williams (1973) 

and Westcott (1977). The following result (Pfeifer (1987» is a key 

to the procedure. 

Theorem 3. Let {Mn} be a homogeneous MC with conditional cumulative 

distribution function F(. I .). Let F_(. I .) denote the corresponding 

left-continuous version. Then there exists an iid sequence of uniform­

ly distributed r.v. 's (over (0,1» on the same probability space (if 

rich enough), {V
n

}, say, such that 

(9) (Il ~ 0) 

where {W n } is also iid uniformly distributed, and independent of the 

MC {M
n
}. 
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Using relation (4), this translates in our case into 

U U 
(10 ) V = (I-W ) ___ n_ + W n 

n+l n+l Un + l n+lU n + l -l 
(n ;;; 0) 

using the fact that with Vn also I-Vn is uniformly distributed. 

Taking logarithms in (10) one obtains the following strong approximation 

result (Pfeifer (1987». 

Theorem 4. There exists on the same probability space (D,A,P) (if rich 

enough) an arrival time sequence {S~} of a unit-rate Poisson process 

and a non-negative r.v. Z possessing all positive moments, with mean 

E(Z) = l-C (C = .577216 denoting Euler's constant), such that 

(11 ) 

(12 ) 

Z and {(S*-n)/~} are asymptotically independent 
n 

log Un = Z+S~+o(l) a.s., log 6n = Z+S~+log(l-exp(S~_I-S~»+o(l) a.s.(n + 00) 

where {-log(l-exp(S~_I-S~»} again is an iid sequence of exponentially 

distributed r.v.'s with unit mean. 

This again proves relation (2) via (3), this time jointly for 

record times and inter-record times. 

It should be pointed out that the Poisson process in Theorem 4 does 

not coincide with the one in Deheuvels' approach. Actually, we have 

(13 ) S* 
n 

n 
L -log Vk 

k=1 

with {V
k

} as in (10). 

We should like to mention that with the approaches 2. and 3., also 

moment estimations of the logarithms of record times and inter-record 

times are readily obtained (cf. Pfeifer(1984a), and Nevzorov (1988». 

Recently, Deheuvels (1988) has extended the one-dimensional MC 

approach to the tWQ-dimensional case (record times and record values 

jointly form a MC, too). With this approach, he was able to extend 

the strong approximation by a Poisson process to all three sequences 

in (2) simultaneously. 

Instead of expressing everything in terms of Poisson processes, 

the Komlos-Major-lusnady construction also allows for a formulation 

in terms of (standard) Wiener processes. Namely, if {W(t);t;;; O} stands 

for such a process, the forementioned results show that it is possible 

to establish on the same probability space (if rich enough) the follo-
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wing strong relationship, which is even closer to (2): 

(14 ) log U n + Wen) + 
n 

O(log n) a.s. (n + 00) 

log b. = n + Wen) n 
+ O(log n) a.s. (n + 00) 

-log(1-F(X
U 

) ) = n + Wen) + O(log n) a. s. (n + 00) 
n 

(see Deheuvels (1988) , and Pfeifer (1986). ) 

4. The embedding approach. 

Going back to Resnick (1973, 1974, 1975) and Resnick and Rubinovitch 

(1973), the basic idea here is an appropriate embedding of the partial 

maxima sequence {max(X
l

, ... ,X ); n ~ I} derived from {X } into so-
n n 

called extremal processes. Any such process {E( t); t > O} is a pure jump 

Markov process with right continuous paths and finite-dimensional 

marginal distributions which in our case are given by 

k tl k t. -t 0 1 
pen {E(t.) ;;;x-l) = F (min{xl'oo,x k}) loTI=2F 1 1- (min{xi, .. ,xI!) 

i=1 1 1 

(15 ) 

for all selections ° < tl < t 2 < ••. < tk of time points, and values 

xl' .. ,x k G~. Such an extremal process 'interpolates' the partial 

maxima process in that we have 

(16 ) 

where e means equality in distribution. The interesting point is here 

that the jump time sequence {Tn} of the extremal process in the inter­

val (1,00) forms a non-homogeneous Poisson point process with intensity 

lit, t > 1, such that the points are a.s. clustering in the intervals 

(U n -l,U
n

), n ~ 1. It follows that the surplus number S of extremal jumps 

over the record times is a.s. finite, with E(slr) = E(zlr), where r 

denotes the o-field generated by the record values (Pfeifer (1986)). 

Here Z is the r.v. from Theorem 4, such that we also have 

(17) E(S) = 1 - C. 

An application of the log function now shows that 

(18 ) log Un = log Tn+S + 0(1) = log Tn +O(log n) a.s. (n + 00), 

where now {log Tn} forms a homogeneous Poisson point process on (0,00) 

with unit intensity. This again proves (2) via (3), for Zn 
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5. The time change approach. 

It is well-known that if the underlying distribution is doubly­

exponential, then max(X 1 , ... ,X n ) - log n, n ~ 1, is also doubly­

exponentially distributed (see e.g. Leadbetter et al. (1983)). The 

same holds true if the indices n are replaced by the random times Un' 

i.e. Xu - log Un' n ~ 1, is also doubly-exponentially distributed 
n 

(Pfeifer (1986)). Since doubly-exponential and exponential distributions 

are tail-equivalent, and any doubly-exponentially distributed sequence 

is O(log n) a.s., it follows that, in general, 

(19 ) -log(l-F(X
U 

»- log Un is asymptotically doubly exponentially distributed 
n 

(20) -log(1-F(X
U 

)) - log U O(log n) a. s. (n + 00). 
n 

n 

Since by (12) , we always have log U -
n 

log 6 = O(log 
n 

n) a. s. (n + 00), 

relation (20) is an elegant tool for again proving (2 ) (or (14) , resp.), 

for all three sequences simultaneously. 

6. Generalizations and open problems. 

Here we shall shortly discuss which of the above approaches are suitable 

for treating more general situations than the iid case. 

6.1. The Markov case. Not much is known in the case where the underlying 

r.v. 's form a (homogeneous, say) Me; cf. Biondini and Siddiqui (1975). 

However, it was shown in Pfeifer (1984b) that in this case, the corres­

ponding inter-record times are still conditionally independent given 

the a-field of record values, such that the conditional independence 

approach 2. is potentially applicable. The main problem here lies in 

the fact that neither the general structure of the record value process 

is completely crear, nor is the (conditional) waiting time distribution 

between successive record values geometric in general. Research in this 

direction is in progress. 

6.2. The non-homogeneous record model. Here one considers the case that 

after the occurence of a new record value, the underlying distribution 

is allowed to change, keeping however the independence assumption 

(Pfeifer (1982a, 1982b~ Here, too, the conditional independence of 

inter-record times given the record values is preserved, the (conditio­

nal) waiting time distributions between records being still (but possi­

bly different) geometric distributions. Here the record value process 

is connected with general pure birth processes, such that strong appro­

ximations in the spirit of approach 2. become available. Some possibi­

lities for this procedure are outlined in Pfeifer (1984c). 
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Unfortunately, the Markov property for record times goes lost in gene­

ral for this model, such that approach 3. is not applicable. 

6.3. Nevzorov's record model. Here one considers the case that the 

underlying distributions are of the form F = Fan, where {a } is a 
n n 

sequence of positive real numbers with I a = 00 (see Nevzorov (1988) 
n=l n 

n 
and further references therein). Letting A(n) = I a k , n ~ 1 it can 

k=l 

be proved that the corresponding record times again form a homogeneous 

Me with transition probabilities given by 

(21) 
A ( ; "\ 

P(U > k I U = j) = ~ 
n+1 n A(k) , 

l;;;j;;;k, n~O. 

Hence the Markov chain approach 3. is applicable, and shows that an 

analogue of Theorem 4 is valid for log A(U n ) if the conditions 

I (ak /A(k»2 < 00, I (ak/A(k» = 00 
k=l k=l 

are met (see Pfeifer (1988) and 

Zhang (1988». Zhang also proved that an embedding approach with non­

homogeneous extremal processes works under these conditions, and that 

similarly the surplus number S of extremal jumps over the record times 

is a.s. finite with E(S) ;;; I (ak/A(k»2. (Similar embeddings have been 
k=l 

considered earlier by Ballerini and Resnick (1985), hOFever with a 

different emphasis.) 

Hence for Nevzorov's model, relation (2) is valid for the sequence 

Zn = log A(U n )· 

Finally, we should like to mention that a time change approach similar 

to 5. also applies here, however for the specific situation that F 

is doubly-exponential. By imitation of the proof of Theorem 3 in 

Pfeifer (1986), it can be seen that here still Xu - log A(U
n

) is 
n 

doubly-exponentially distributed, hence again 

(22) Xu = log A(U n ) + O(log n) a.s. (n -+ 00). 
n 

Note that the latter relation also holds without the above-mentioned 

regularity conditions. For instance, if an = e
cn

, n ~ 1 for some c > 0, 

then log A(n) = nc - log(l-e- c ) +O(e- nc ) (n -+ 00), hence we have here 

(23) cU
n 

+ O(log n) a.s. (n -+ 00) 

with 



(24) U 
n 

n 

= L Ik + 0 (1 ) 
k=1 
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a. s. (n -+ 00) 

where the Ik are iid with P(Ik=O) = I-P(I k=l) -c 
e 

This gives immediately rise to results like (2), with the proper 

normalizations, via (3), for Un and Xu . 
n 
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