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Abstract

It is shown that an elementary pure birth process is a mixed Poisson process
iff the sequence of post-jump intensities forms a martingale with respect to the
o-fields generated by the jump times of the process. In this case, the post-jump
intensities converge almost surely to the mixing random variable of the process.

INTENSITIES; COMPLETELY MONOTONIC FUNCTIONS; BERNSTEIN'S THEOREM

1. Introduction

Mixed Poisson processes play an important role in many branches of applied
probability, for instance in insurance mathematics and physics (see Albrecht
(1985) and Pfeifer (1986) for recent surveys). They belong to the class of
elementary pure birth processes {N(t); t =0} with standard transition prob-
abilities
1) Pum(s,1)=P(N(t)=m |N(s)=n), O=n=m, 0=s=t

possessing right-continuous paths and positive and finite birth rates
.1
) ()= L“f% T Pranlt,t +h), nt=0,

and all finite-dimensional marginals of the jump-time sequence {7, ; n =0} are
absolutely continuous with respect to Lebesgue measure (see Pfeifer (1982)). For
such processes, the jump times form a Markov chain with transition probabilities

3) P(T,>t|T,_,=s)=%—}IfA(?), Oss=i nz1

and initial distribution function F; where
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4) 1—Fn(x)=exp(—LxAn(u)du), x=0, n=0

(the F, are in fact all cumulative distribution functions), hence all F, are
absolutely continuous with densities f, (say), and the conditional densities for
the transition probabilities can be represented as

—3 n s
) f(s|0) _ﬂ—Ll—F,.(t)’ 0<t=s, nzl.
Moreover, the birth rates coincide with the hazard rates

(6) A..(t)=%é% a.e., n,t=0.

If especially {N(t); t =0} is a mixed Poisson process, then also
M A= J’ x"exp(— xt)dG(x)/J x" exp(— xt)dG(x), nt=0,
0 0

where G is the c.d.f. of the mixing random variable A (say). In fact, Lundberg
(1940) has proved that such a representation characterizes the intensities of a
mixed Poisson process.

In terms of random variables, a mixed Poisson process behaves like a
homogeneous Poisson process with rate A given A = A, from which it also follows
that

®) L) =EA|N@®=n), nt=0.

The following result completes some of Lundberg’s (1940) results on the
asymptotic behaviour of the intensities for mixed Poisson processes.

Lemma. Let{t, ; n =1} be a sequence of positive real numbers converging to
t >0such that |t,/t —1| = 0(n™"?), n — =, Then, if 1/t is a point of increase of G,
we have

©) lim A, (nt,) =1 .

Proof. Let &,>0 be chosen in such a way that ne,—0, ne,— and
(t./t —1)/e, — 0 for n — . From relation (7) it follows that

A (nt,) =% J; " e (xt, ) exp(— nxt,)dG (x) / L " e (xt,)" exp(— nxt,)dG(x)

1 (1+e,)/t,

xt, eXp ( -2a- xt,.)z) dG(x)
—~ tn (A—en)ity 2

e, ), n 5
J: exp(-—i(l—xt,,) ) dG(x)

1—en)tn

1
~T for n >,

n
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This proves the lemma.

The above result is in general not true without further conditions on G as can
be seen for example by mixing distributions concentrated in a single point A > 0;
here A,(t)=A for all n and ¢, A being the only point of increase of G. As an
example, consider a Pélya—Lundberg process where A follows a gamma distribu-
tion with mean u >0 and variance aun’, a >0. Here

(10) M= hT i, miz0,

from which the validity of (9) can be seen explicitly, for all 1 >0.

2. The martingale characterization

Let {A, (T,-,); n = 1} denote the sequence of post-jump intensities. In the light
of (2), the post-jump intensities describe the transition behaviour of the process
immediately after a jump has occurred. The following result gives a characteriza-
tion of mixed Poisson processes by a martingale property of this sequence.

Theorem 1. Let {N(t); t =0} be an elementary pure birth process with
intensities {A, (¢); n, t =0} and jump times {T, ; n =0}. For n =1 let &, denote
the o-field generated by Ty, - -, T,—;. Then {N(t);¢ =0} is a mixed Poisson
process iff the post-jump intensities {A,(T.-:); n =1} form a martingale with
respect to {&f, ;n =1}, and EQA(To)| ToZ 1) = Ao(t) as., t =0.

Proof. Due to the Markov structure of jump times the martingale property of
the post-jump intensities is equivalent to

(11) E(An(T,)

T..i=t)=A,(t) as.foralln=z=1
which by (5) and (6) is in turn equivalent to

T fan(s)  _ fa(s) __f®
12)  TCEL.oI-EO® 1T-F0

a.c.

saying that (a suitable version of) f. is almost everywhere differentiable with

(13) fun= -5 10 ae.

or equivalently

19 Srog-Fu@)= —p2ls Ll diogf () ae

Integration of this last relation shows that there are constants c, > 0 such that

(15) 1-Fa®=af(), 120,
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which in turn implies that f, is absolutely continuous and the recursive formula

(16) fan(®) = = cafu(t)

holds everywhere on [0, ©). By induction, we see that all derivatives of f, exist on
[0,), and that for all n =1,

a7 Lo=1y e, rzo

Since by assumption, the intensities (and hence all f,) are positive and finite, we
have

(18) (-1 =0,  nt=0.

The density f, thus is completely monotonic on [0,x), hence by Bernstein’s
(1928) theorem there is a bounded and non-decreasing right-continuous function
H such that

(19) fo(t) = J: exp(— xt)dH(x), t=0.

In fact, since f, is a density, we have that (1/x)dH(x) = dG(x) is a probability
measure from which it follows that

f(0)= If ck j " %" exp(— xt)dG(x)
(20 .
1—F,.(t)=kl:!) C“J x" exp(— xt)dG(x), n,t =0.

Hence relation (7) is satisfied, saying that {N(¢); ¢ = 0} must be a mixed Poisson
process with mixing distribution dG(x). Conversely, since every mixed Poisson
process has intensities of the form (7), it is easily seen that relation (12) holds,
hence the post-jump intensities possess the martingale property, which proves
the theorem.

It should be pointed out that since f,(0) < by our assumptions, the mixing
random variable must be integrable with

(1) E(A) = fo(0).

A simple application of the martingale convergence theorem (see e.g. Billingsley
(1979)) then shows that the post-jump intensities converge almost surely to some
integrable random variable since also

22) E(\(Ty) = j -&Q);%%)dt J' &8 fo(t)dt = o(0).
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The question now is what the possible limits of the post-jump intensities are. The
following result gives an answer to this.

Theorem 2. If A is the mixing random variable of the process, then the
post-jump intensities converge almost surely to A.

Proof. For any mixed Poisson process, we have (n +1)/T, — A a.s. by the
strong law of large numbers, applied to the Poisson process with rate A,
conditionally on A = A, and by the law of the iterated logarithm,

\ A nrljl'll = O(\/% loglog n) =0(n""?) as.for n—>ow,

Since also A is almost surely concentrated on the points of increase of G, the
c.d.f. of A, we have by the above lemma

23) AT = A((n +D)(T./n+1)~(n+1)/ T, - A as.,
which proves the theorem.

For instance, if A is concentrated on two points v, < », with mass « and 1 — «
each (a >0), then

v, t < h(vy, v2)
(24) ALnt)—>{an+(1—a)y,, t=h(y,1)
Vi, t> h(vl, Vz)

where h(vy, v,) = (log v, —log »)/(v. — 1), as can be seen from Lundberg (1940),
relation (108). Since 1/», < h(»,, v,) < 1/v, always, it can explicitly be seen that

v, with probability a
(25) An+1(1‘n) -
v, with probability 1 — a,
ie.
Aa(T)— A as.
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Note added in proof. A direct proof of Theorem 2 can be obtained by the fact
that analogously to (8), we also have

MO=EQA|T,.i=1) as,t=0,n=1
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and hence A, (T,-;))=E (A‘ T.-1) a.s., n = 1. The statement then follows from
the fact that the mixing random variable is measurable with respect to the
terminal o-field generated by the sequence {T, ;n = 1}.
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