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ON THE DISTANCE BETWEEN MIXED POISSON AND POISSON DISTRIBUTIONS
D. Pfeifer®)
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Summary. Estimations and asymptotic expansions for several distances be-
tween mixed Poisson and Poisson distributions are given, such as the
total variation distance, the Kolmogorov distance and a specific Wasser-
stein distance (Fortet-Mourier distance). As an example, we generalize
and improve results of Vervaat [9] on the total variation distance be-
tween negative binomial and Poisson distributions. The main tool is an
appropriate application of operator semigroups and their probabilistic
representation theory.

1. The Semigroup Setting of Poisson Approximation
Let m denote the set of all probability measures over Z+, the non-
negative integers, and let PS, PTE M denote the distribution of discrete

random variables S and T. On M, metrics di (i=1,2,3) will be considered
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(1.1)  dy(P°,P) = sup [P(SEM)-P(TEM)]| =3 I |P(S=K)-P(T=K)]|
Mozt k=0
(total variation distance)
S Ty _
(1.2) do(P,P") —ksgpZ+ [Fg(k) - Fr(k) |,

where FS’FT denotes the c.d.f. of Sand T
(KoTmogorov distance)

(1.3)  dy(P,pT) = inf E(]s-T) - 2 [Fg(K) - Fr(K) |,

where Q ranges over all joint distributions of
(S,T) with the given marginals (Wasserstein or
Fortet-Mourier distance); see Vallender [8].

These metrics can in a natural way be imbedded in a more general Banach
space setting as follows.

Let X denote the Banach space 21 of all real-valued absolutely
summable sequences f = (f(0),f(1),...) or the Banach space g~ of all
absolutely bounded sequences, resp. A measure peft will be identified
with the element (1 ({0}),u({1}),...)e€ 21. For fezzl, g€ 2™ the convolu-
tion fxg is defined by

n
(1.4)  fxg(n) = 5y f(k)g(n-k), neZ".
k=0
Then again, fxge X, and we have

(L8)  (Ifxglly s F I,y el .

where ]|.Hx denotes the corresponding norm on x. Any measure pcm can
now be considered as a bounded linear operator on ¥ via

(1.6) ug = U= g, ge X.

In fact, y is a positive contraction on x with
(1.7) ull = = w({k}) = 1.
k=0

The metrics di’ i=1,2,3 can then be given the following equivalent form
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(1.8) dy(usv) = % [|(u-v)a llgl, g = (1,0,0,...)
(1.9) dy(psv) = [{{u=v)h le, h = (1,1,1,...)
(1.10)  d3(usv) = liﬂ“(“'\’)hn 1[21, h, = (1,...,1,0,0,...)

(containing n times 1 and O otherwise), for all y,vemm. If specifically
p is a Poisson distribution with mean £20, then the semigroup repre-
sentation

o Kk
(1.11)  u=ett- g Bk
k=0 ™°
holds where the infinitesimal generator A is defined by

g(n-1)-g(n), nz1

(1.12) Ag(n)={ ). n-0
~9(0), n=0 .

Obviously, A is a bounded linear operator on X with [|A[[=2 in all
cases. Now if y is a mixed Poisson distribution with mixing r.v. X i.e.

] k

u({k}) = f e-kg-%T Px(dg) for kz 0, or in the above operator setting
o} X ©

(1.13) = g™ = ({ hepX (dg)

which by the uniform continuity of the semigroup exists as a Pettis
integral in g(x%), the Banach algebra of all bounded endomorphisms on X,
where the composition of mappings plays the role of the (Banach) pro-
duct. For the estimation of the distances di it is therefore necessary
to analyze the norm distances

(1.14) ]|E(eAX)g- eAgg”x

for elements ge %. This can be done in generality by means of the
probabilistic representation theory of operator semigroups as developed
in Pfeifer [6], [7].

Actually, relationships between convolutions and semigroups have
been investigated earlier (see LeCam [5] and Feller [4]), even for more
general Banach spaces. However, for our purposes, we shall need estima-
tions independent from the convolution structure, such as the following
(main) result.
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THEOREM 1. Let X be a Banach space (which may be arbitrary) and A
the (bounded) generator of a contraction semigroup on X. Let further X
be a non-negative real-valued random variable. Then for all g cX, the
following estimations hold true.
A 1 2 11p2 . 2
(1.15)  [|E(eM)g- ePoq 157 EC- ©)° 1A% ||, iF XEL2(P) and E(X)= £

| 11EE¥)g- e*g 1]~ IlE(K- £)eh® Ag+ 4 €

s%llA3g IIXE(IX- £%), if xe L3(p);

E(X- ) 7P |||
(1.16)

(1.17) | 11E(™)g- et g~ [IE(X- €)eA£A9+% E(X- £) ePeag !
) 1, .AE/2,3 3y, 1 3 4 . 4
< g X2 11 EOx- 1)+ 3 (0% || ECx- )%, if xe Lhep).

Here throughout, £>0.

Proof. Theorem 1 is basically an extension of Theorem 4.1 in
Pfeifer [7], the proof hence follows the same lines. We shall give
here a detailed proof of (1.17) only. Since

AX Au,3

X

Ja-eMtg= L (X-£)eMoAg + 1(x-£)ZePEnZg 4 | XU)T AUpSG g4y,
€

the remainder term in (1.17) is obtained by a suitable estimation of

the expectation of the latter integral. If I(.) denotes the indicator
r.v. of the event specified, we have

E[f izzyl—-eAuA3g duj = E[I(X> £) j 153#1— (u- 5. AE;/ZA g du
- I(£/2<Xg£ I% A(u AE/zAgdu

- I(Xs £/2) ﬁ?‘i eMiadg qu1,

IIEL I (o A”A 9 du] Il = ELL(X> €) ILTL”eAE/z 3 || o
g
+ I(€/2<X§ E) J’ SX u HEAE/ZA g” du+I(Xs£/2) HA g” X- g 1

Ag/z 3 ) i
e(1x-e1%) 11" 2% ||, +g 1A% || E(10x se/2) x-¢13).

E(e

giving

Now by Holder's and Markov's inequality,
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1/4 3/4 2

EX(Xs &/2) [x-£131s (P(X = €/2))

which finishes the proof.

(E(X-£)7) g E(X- 5,

Clearly, the right hand side of (1.17) can further be improved by
e.g. exponential bounds for (P(Xs< g/2))1/4, for instance if the moment
generating function of X exists.

Theorem 1 is the key for suitable estimations for di(u,v) in
relations (1.8) to (1.10). This will be worked out in more detail in
the subsequent chapters.

2. Approximation of Mixed Poisson Distributions - The Unbiased Case

Here we shall assume that for the mixing r.v. X we have E(X) = &
(which will be referred to as the unbiased case, since then the
variance of X,oz, plays the central role in (1.15) to (1.17)). The
following estimation for the distances di(u,v) can immediately be
derived from Theorem 1.

COROLLARY 1. Let v be a mixed Poisson distribution with mixing
r.v. X such that E(X)=¢&, and u a Poisson distribution with mean £>0.
Then

2 . 2
(2.1) %(mv)éKﬁj,1fX€L(PL
v - _1
where K;=Ky=1, K, = 5,

2

Idi(u,v)-C %—ne"%@g e, = 5 KEC |X-£l3), if

(2.2) XEL( ), where C, = 7’C2'C3'1 X, = X; -2 s %= 27,
9,=(1,0,0,...), 9,=93= (1,1,1,...)s

if additionally also Xe€ L (P), then the right hand side of (2.2) can
also be replaced by

@2.3)  cy/6 1M 2%, |, E(X-21%) 4§ KiveE(e- )%,

IIX,

Note that here for d no longer limit relations have to be considered,

since now A%gy = (1,- 100 erl, A%y = (-1,2,-1,0,0,...)e2]
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Corollary 1 allows for sharp upper and lower bounds for the dis-
tances di in the Tow range for £ (relation (2.1)), in the moderate range
(relation (2.2)) and the high range (relation (2.3)), in the latter
cases provided that E(|X- €[3) and E(X- &) are small enough in compar-
ison with 02, resp., since the norm term in (2.3) can roughly be
estimated by

AE/2,3 AE/2,2 1 _ oy AE2,2
(2.4)  [1e"°A gillxi < [Iadl [[e™ A giIin = 2(le"7 A gi'lxi :

An exact evaluation of the norm terms in Corollary 1 is given below.

THEOREM 2. With the notation of Corollary 1, we have for all t>0

a1, b1,y pry .
9 W I - L ey
a-1 b-1 .
G0 1y e, gy
(t]
At,2 t -t
(2.7) ”e Ag3“X3= We s

where [+] denotes the integer part of the real number specified, and

(2.8)  a= [t+4+/EFI/E], b - u+%-fﬁmm].

Further,
[t]
At,3 1t -t 1
2.9 e A <+ e "+ —
(2.9) I 9, sz T TET "
At,3 At,2
(2.10)  fle"A 93le3 = |le”A 91||x1 :

Proof. Relation (2.5) was proved in Deheuvels and Pfeifer [2] , while
(2.6) and (2.7) were proved in Deheuvels and Pfeifer [3]. For the proof
of (2.9) and (2.10) we only have to observe that A392 = A393 = -Azgl,
from which (2.10) is immediately obvious. Also,
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n-2
HeAtAzg1 “ = sup e -t t |t - 2nt+ n(n-1) |
-t tn -2 nz0
(2.11) =supe  ——| (n- t) -nj
nz0
1 n
ot t" -t t 2
<t sup e T=TyT + sup e (n-t)",
vl n-%): ;ZAngo n?

from which (2.9) follows by Stirling's formula.

It should be pointed out that the expressions on the right hand
side of (2.5) and (2.6) can also be represented as

a-1 k-1

(2.12) t  (a-t) t (k") henever k- /RKst<k+ 1-/k+1, k=1,
al k!
n-1 k-1

(2.13) t bEt‘b) = 1t kst-k) whenever k+/Kst<k+ 1+vKk+I, k20.

In fact, part of these developments (however for the Poisson bino-
mial setting) have been given by Barbour and Hall [1], p. 477, who
suggested that the quantities above would be "not in general very neatly
expressible". Also, by Stirling's formula, we have

.t At,2 _ -1/2
(2.14) 112-I||e A gl]|xl = (2me) ~ 242,
a fact that has also been observed by Barbour and Hall [1], apparently

without recognizing the constants m and e being involved here.

Actually, by use of Stirling's formula, we can give the following
bounds on (2.12) and (2.13).

LEMMA. We have

(2.15) (Zwe) 1/2exp( -3/(2/%)) < ————%3—31 tg-%(Zﬂe)-l/z, t23-/3,
b-1
16, Lone) M 2exp(-2/vt) « LT o7t < Liome) M Zexp(2/(24R)) s
2.16 '
t> 3473,

[t] . _
(2.17)  (2nt) Y 2exp(-3/(2t)) < -[‘iﬂT et o ety V2R, ta 1.

k
Proof. Let H(t) = K8 for k- /ks t<k+1-/kHT, kz3. In that
—_— .
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range, H(t) is maximal for t= k+21- - Yk+1/4 and minimal for t=k-vk.
k
similarly, if J(t) = 48K o7t for kR st <k+ 14 /RFT, k23, then

J(t) is maximal in that ;‘ange for t=k+1/2+vk+1/4, and minimal for
t=k+ 1+vk+1l. By the use of a little analysis and Stirling's formula,
(2.15) to (2.17) are now easily proved.

By means of Corollary 1, Theorem 2 and the above Lemma we have at
once a large number of upper and lower bounds for the distances di(“’\’)
available. Note that also for t>0

Lt oo k3

At,3 t 3 2
A kEO S |t - 3kt%+ 3k(k-1)t - k(k-1) (k-2) |

lle" A g, |l4 = e
1llx)

(2.18)
géumu%+§fm%n+§an

where T is a Poisson random variable with mean t, giving

At 3 JIFE . 3 1 1
(2.19)  |lefta% g, <L 3 L Lol
1% = ot g ¢ i

for t-+« which is the same rate as in the second order estimations in
Barbour and Hall [1] for the Poisson binomial setting.

An interesting asymptotic result is given by

COROLLARY 2. Suppose that the distribution of X depends on the
mean £ and the variance 02 in such a way that

2
E(X-£)* = 0(%) for £+e. Then
2 -1/2 2
(2.20)  dy(usv) = E(2me)”/C + 0(-‘;2),
o2 =172 o oP
(2.21) dy(1sv) = Z—g(2ﬂe) + 0(?),
(2.22)  dqlusv) = 02(2115)-1/2 + O(S’i)
3 7 £VE
Note that in Corollary 2, we necessarily have 02+0 since 04;; E(X-—g)4,
hence 02= O(é).

An important example of mixed Poisson distributions are the negative
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n
Poisson binomial distributions v = = Vi where each Vi is a geometric
k=1
distribution with vk({O}) = Py where 0< Py = 1- gy < 1. In this case, we
n

may choose X = I Xk where Xl""’xn are independent exponentially

k=1
distributed r.v.'s with means qk/pk each since
n
ALK n oA, n A n
(2.23) v=Ee" " )=E(T e ")= 1 E(e )= = Ve
k=1 k=1 k=1
(cf. also Feller [4], p. 573). Also,
AX qQ 9 p
k k k k Av-1
2.2 = E = = R(—=) = (I - —A
(2.2) vz Ele ) = piRED = (- R

where R denotes the resolvent of the semigroup and I the identity
operator (see Deheuvels and Pfeifer [2], or Pfeifer [7]), which gives
a justification for the name "negative Poisson binomial distribution”
for v. Here,

n q noq
(2.25) £= 5 X, &= 31 (2
=1 Pk k=1 Pk

n

q
(2.26) EX-8)*-=6 1 5%+
k=1 Pk

< 904,
which follows easily by the relation

2.27)  £x-e)* = %0y + 364,

where G(s) = 1og(E(eSX))a sz 0.

Now if the 9 depend on n in such a way that max(ql,...,q )-+0,
n n n 2 n
Ioqre, (I q)( z 9 ) = 0(1) for n->, then by Corollary 2,
k=1 k=1 k=1

n n
(2.28)  dy(uov) = SLE 2me) 2w 0((z q Pz 07D,
k=1 K kel
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no%.2
LB 1/2 noo,on 2
(2:29) g = R @02 05 0 2)0s 007,
. e
k=1 Pk
nq
" Sk2

1 k=1 Pk 2,, ! -3/2,

(2.30)  dy(uv) = 5 e V24003 a D3 a)
/ 2 % k=1 k=1
k=1 Pk

For the i.i.d. case considered by Vervaat [9], i.e. P = P> all k, this
means ng- e, n2q3—r 0, n+>e, giving

-1/2

2.31) 4y = & 2re) V2 4 0

(2.32)  dyluv) = g5 (2r) "% 4 o)

and if also n3q5->0, n->o,

)3/2 -1/2

(2.33)  dylu) = 5 AV Een 2 4 oY),

Relation (2.31) improves Vervaat's [9] bound

(2.34)  dy(uv) s 4

asymptotically by the factor (Zﬂe)'l/z. In this low and moderate range
for &, relations (2.1) to (2.3) will in many cases also improve upon

this estimation. For instance, as long as £<2- /2, we have

dq(usv) s min{cz(l -%-g)e'g+ 203, (2- /2‘)%}
(2.35) 687 . q
< min{.231 + ——=, .568} 4 < 21 |
/n p P

3. Approximation of Mixed Poisson Distributions - the Biased Case

For Poisson approximation with respect to Poisson binomial distri-
butions, it has turned out that within the low range for the mean,
unbiased approximation is asymptotically less effective than biased
approximation (see Deheuvels and Pfeifer [2], [3]). This suggests that
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for Poisson approximation in the mixed Poisson case, a similar result
should hold true. In fact, the general formulation of Theorem 1 gives
an answer to this question.

COROLLARY 3. Let v be a mixed Poisson distribution with mixing r.v.
X such that E(X) = >0, and y a Poisson distribution with mean £>0.
Then
A&AZg

d; (V) - € [1(z- )¢ gy + 3((c- &)+ oP)e il |

(3.1) i
s% E(1x-€3), if xel3p),

where C s g1, X;» K1, i=1,2,3 are as in Corollary 1. If additionally
also XGEL (P), then the right hand side of (3.1) can also be replaced
by (2.3).

A general development for the norm terms in (3.1) can be found in
Deheuvels and Pfeifer [2], relation (2.15), and Deheuvels and Pfeifer
[3], relations (3.19) and (3.20). We shall not discuss th1s in deta11
here but will rather concentrate on the case when z-¢& = ((c E) 2),

or, equivalently,
(3.2)  €=c-ot/(1+/1-F),

provided that ozs min(z,1). This choice is asymptot1ca]1y (when o} —»O)
optimal in the low range for ¢ (provided that E(|X- £] ) = o(o 1),
giving
[zl

1 2¢ - 2
(3.3) di(usv) =50 e %4 0(0%)

1 2 2
(3.4) d3(u,v) =go+ o(c").

Surprisingly, for d2’ a biased choice for ¢ will in general not result
in (essentially) improved estimations; cf. also Theorem 3.1 in
Deheuvels and Pfeifer [3]. A biased choice of g according to (3.1) will
asymptotically (for oze-O) be better than an unbiased choice in (3.3)
as long as

3.5)  c<l+ (Z+ Y3 - (2- )30 1,596

(cf. Deheuvels and Pfeifer [2]), and better than an unbiased choice in
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(3.4) as long as
(3.6) t<log 2 ~.693
(cf. Deheuvels and Pfeifer [31]).

For negative Poisson binomial distributions, we generally have
e- 8° = 6 (0)+3((c- 0%+ F) 2w aem (0) (2 - ¢)
+6((c- 8%+ ) (e 0)% (- 0)°
with G as in (2.27), giving

3.8)  E(x- ) 5140, if o%s /8.

(3.7)

We thus have E(|X- €|3) = 0(02) for 02+ 0, hence biased Poisson approxi-
mation is asymptotically more effective for negative Poisson distribu-
tions in the Tow range than unbiased approximation. For instance, in

the i.i.d. case, under the assumptions that qs<.l, .04<%<2-v2, we
have in the biased case

(3.9)  dyluv) = 3o2(1407)et 43 o® < (.180 + B9 3

vn
which is asymptotically better than (2.35).
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