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A SEMIGROUP APPROACH TO POISSON APPROXIMATION

BY P. DEHEUVELS AND D. PFEIFER

Université Paris VI and Technical University Aachen

The aim of this paper is twofold: first, to show that Poisson approxima-
tion problems for independent summands can in a natural way be treated in a’
suitable operator semigroup framework, allowing at the same time for an
asymptotically precise evaluation of the leading term with respect to the total
variation distance; second, to determine asymptotically those Poisson distri-
butions which minimize this distance for given Bernoulli summands. Besides
semigroup methods, coupling techniques as well as direct computations are
used.

1. Introduction. Let X|,..., X, be independent Bernoulli random variables
with p,=P(X;=1)=1-P(X;=0),0<p;<1,i=12,...,n,and Y,,..., Y,
be independent Poisson random variables with expectations p;, i = 1,2,... . Let
further S, = ¥*_, X, and T, = ¥ Y,. We are interested in the approximation of
the distribution of S, by the distribution of 7,, with respect to the total variation
distance

d(S,,T,) = sup |P(S,e M) - P(T,c M)|
Mcz*

- %EOIP(S,, - k) - P(T, = &)|.

Estimations of this distance have been given by different authors, for instance
Le Cam (1960), Kerstan (1964), Chen (1974, 1975), Serfling (1975, 1978), and most
recently by Barbour and Hall (1984), however with a special emphasis on the case
p; = p; in most of these papers. Besides this choice, also y; = A; = —log(1l — p,)
is of importance since for n = 1, this minimizes d(S;, T;) with respect to p, as
was shown by Serfling (1975,1978) using coupling arguments. If we especially
assume X; and Y, to be maximally coupled, then by Doeblin’s inequality,

(@ +A)e™)

n n
=1

d(s,,T,) < P(S,#T,)<1-[[Q1-P(X;#Y)) =1~ |

i=1 14

M=

<

2
Ai’

™M=

(eM—1-X)e™<t

1 i=1

i

which is a better estimation than those known for the case u; = p; if ¥7_A; is
small in some sense. Moreover, u; = A; is, in an asymptotic sense, also the best
possible choice as can be seen.from the following result.
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664 P. DEHEUVELS AND D. PFEIFER

THEOREM 1.1. If 0 < LI_,\; <1, then for all choices of n;, i =1,2,...,n,
we have

A, 1) = | (-1 >}eXp( £ )

i=1
z%{ zx%}exp(— zxi).
i=1 i=1

Consequently, if p,,..., p, depend on n such that ¥, p, » 0 for n - oo,
then uniformly in n, we have

infd(S,, T,(1)) ~ d(S,, T,0) ~ X p?

i=1

while
d(S,, T,(p)) ~ Zp, only,

where for p = (gy,..., un), T,(p) denotes a Poisson random variable with expec-
tation £, u;, and the inf is taken over all admissible values of . The last result
also shows that the estimation of Theorem 1 in Barbour and Hall (1984) which is

d(S,, T,(p)) < {épi}_l(l —eXp(— ipi))élp?,

is sharp in this case. For X7, p, being large, however, it can be shown that

d(S,, T,( p)) < d(S,, T(\) whlch follows from a general evaluation of the lead-
ing term in d(S,, T,(p)) by means of an appropriate semigroup approach. If we
assume that X, p; tends to infinity in a certain way for n — oo, then it can be
shown that the choice p = p is indeed asymptotically optimal.

THEOREM 1.2. If X7 | p, — oo and max(p,,..., p,) = 0 for n = oo, then

(5, T0) ~ (27e) | £ ot / P

If additionally {£?_, p;}max(p,,..., p,) = 0, then also
1nfd(Sn, n(l"‘)) - ( ns n(p))

Note that the first relation above corresponds to an evaluation of Kerstan’s
(1964) leading term, improving at the same time asymptotically the inequality
(2.7) in Barbour and Hall (1984) for this case. It is also possible to derive results
for intermediate cases, for instance if ¥/, p; » a with n — co for some 0 <
a < .
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THEOREM 1.3. Suppose that X7 p, —» a with 0 < a < o, and
max(p,,..., p,) = 0 forn = oco. Then

ats, 1o - 4{ £ oi){ e

and
infd(S,, T,(1)) ~ d(8S,, T,(\)) iffa<v2.
®

Here [a] denotes the integer part of a.
Further, for a > V2, there exists 0 < £, < 1 such that

intd(S,, To(k)) ~ d(S,, To(p + £a2)),
where p* = (p3,..., p2).

Precise evaluations for the last expression as well as for £, will be given in the
sequel.

2. The semigroup approach. Consider the Banach space ! of all ab-
solutely summable sequences, and let .# denote the set of all probability
measures with support contained in the nonnegative integers Z*. For m € ./,
identify m with the element (m({0}), m({1}),...) € I'. Let further f * g denote
the convolution of f, g € [}, i.e.,

(21) jeg(m) = ¥ f(k)gn k), nz0.

Then f*g <!, and || f*g|l <|/f|llg]l. Define a contraction B on I' by Bf =
g, * f where ¢, denotes the unit mass at point £ € Z*. Then any measure m € ./#
can be interpreted as operator on ! via

[« ]

(2.2) mf=msf= Y m((k))B', fel.

k=0
Further, if I stands for the identity mapping from /! to /', and if A = B — I,
then A is the infinitesimal generator of the Poisson convolution semigroup,
given by

o0 k
edf = ) —Akf
k—o k!
2.3 ) tk
(23) = Y e t—gxf
P

= Po(t)*f, t>0, fell,

where Po(#) denotes the Poisson distribution with mean ¢.
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Since for measures m,, m, € #, we have

ékgtml({k}) — my({k))]

d(m,, m,)
(2.4) v
= 3[(m, — m,)e|,

where again d is the total variation distance, we can easily formulate Poisson
approximation problems for independent summands in this Banach space setting.
Namely, if W,,...,W, are independent random variables with distributions
my,...,m, €4, and if U, = L7_|W,, we can write

ool £ - i)

i=1 =

(2.5) d(U,, T,(n)) = 3

Since all operators involved are contractions, a simple estimation for (2.5) is
(26) ( ns n(nu')) = % Z "exp(nu'zA) - mi”‘
i=1

For instance, if m; is the binomial distribution on {0,1} with m;({1}) = p,,
then also m, = I + p;A, hence

(2.7) d(U,, T,(p)) < Zp,,

which follows for instance by Proposition 1.1.6 in Butzer and Berens (1967) [in
fact, m; represents the two first terms in the Taylor expansion of the Poisson
semigroup at ¢ = p;; cf. (2.3)]. Likewise, if m,; is the geometric distribution over
Z* with m({0}) = q; = 1 — p,, then also m; = (q,/p;)R(q,/p;) where for s > 0,
R(s) = (sI — A)~!denotes the resolvent of the semigroup, hence

29) AU, (W) < ¥ (p/a),

where p; = p,/q; [see e.g., Pfeifer (1985a), Theorem 7.5 and Pfeifer (1985b)]. This
generalizes results of Vervaat (1969) to the case of non-i.i.d. summands. While in
the introduction it was shown that the estimate (2.7) is sharp for L?_, p; small
and n large, it can be proved by methods developed in Pfeifer (1985a) that the
same is true for relation (2.8). :

As a third example, take m; = (1 — p; + p?/2)e, + p,(1 — p,)e; + p?/2e, =
I+ p,A+ p2/2A% then

(2.9) d(U,, T(p)) < §

which can be proved similarly to (2.7); just note that in general, we have
JIA¥| = 2% forall ke Z.

Although the semigroup approach resembles the operator technique used by
Le Cam (1960) and Chen (1975), it has the advantage of covering different
problems such as the one above, and allowing for an immediate translation of the

’

1M=
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results obtained to the situation when other distance measures than the total
variation distance are considered, for instance the cumulative distribution dis-
tance d,, given by

(2.10) do(S,, T,) = sup|P(S, < k) — P(T, < k)|.
k=0
This is possible by a simple change from ' to [* [see Pfeifer (1985b)].

To shorten matters, we shall for the remainder of this paper restrict ourselves
to the discussion of Poisson approximation for Bernoulli summands with respect
to the distance d. However, most of the results given can also easily be
formulated for the more general setting outlined above.

THEOREM 2.1. Forp,,..., p, arbitrary, we have

(2.11) d(S,,T,(p)) = —{ ipf} exp{( gn: pi)A}AQEO +r,(p)
with
:l 1p13
r.p) <26 Y

1

X
< 2.6§,l——max(p1,..., P.) if max{p;} < 1.

In general, we have

d(S,, T,(r)) = 3

(m;— pi)exp{( i p,-)A}Aeo +

i=1

(2.12a)

+3 Zp?exp{( > pi)A}A%o +r¥(p) +s,(p,n)

i=1 =1

with

n n

r¥(p)<3) p}+ 2{ > p?}maX(pl,..., P,)

i=1 i=1
and
sa(p, 1)

< Z —p,->}2max{

o

|

I
—
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It should be pointed out that the error estimate for r,( p) is basically the one
given in Kerstan (1964), relation (5). For a discussion of this estimate, cf. also
Barbour and Hall (1984).

The following result gives a precise evaluation of the norm terms in Theorem
2.1.

THEOREM 2.2. Fort> 0, y € R we have
¢ltl 2

tA —9p—t_ N
(2.12b) |le*Ae,|| = 2e [~ Voot (t > ),

t* Ya—t tA-Y (B -t
le*4A%e,|| = 2{ (:! ) (B! )}e“
(2.13) 4
~ tm (t - °°)»
where

’

@14)  a=[er i+ (64 )] and = e+t - (24 9)7]

2{ N8 —t+ i) (= g+ vE) } -t

I] vt~ 2%Ae, + €A%, H

4! 7!
(2.15) ~ L{{exp(—lr?) + iexp(_lgd)}
t\/’ﬁ 2 { 2
4
2 e (t = ),

where 8 = [t —p + (t+ p*)'/2], n=[t— p — (£ + p*)"/?] with p = (vt — 1)
and ¢ =v/2+ (1 + v2/4)"% (o' = oo for n < 0).

Note that relation (2.13) is just an evaluation of Kerstan’s (1964) leading term
(1) as can be seen from the proof of Theorem 2.2, giving a simple proof of the
right-hand side in Theorem 1.2 via Theorem 2.1, with ¢ = £7_, p;. On the other
hand, if t=3X",p, > 0 for n > 0, we have |e"4A%,| — ||A%,| = 4, hence
d(S,, T,(p)) ~ L™, p? as was stated in the introduction. Similarly, the first part
of Theorem 1.3 is readily obtained from (2.15) and Theorem 2.1; we only have to
observe that we may choose y2 =t =Y"_ p, giving § = [¢ + 1] and 5 = 0, and
that A, — p, = jp} + O(p}).

A comparison between (2.12b) and (2.13) in the light of Theorem 2.1 shows
that in general, the choice p = A is (in an asymptotic way) better than p = p, as
long as

at*l  a*Ya-a) af " B-a)

]! © ol T

where a and B are as in (2.14). Straightforward numerical computations show
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that this occurs as long as a < a,, where 1.59 < a, < 1.60. In this range, we have
[a]=1, a =3, and B =0, which implies that x = a, — 1 is the root of the
equation

x¥+3x-2=0
which is x = (V2 + 1)V/% - (V2 — 1)/, giving a, = 1.596071... . This proves:

COROLLARY 2.1. Let X' ;p;, = a with 0 < a < o, and max(p,,..., p,) = 0
for n > co. Then asymptotically

d(Sn, Tn(;\)) < d(Sn, Tn(p))

whenever a < a,, while the converse is true for a > a,.

3. Asymptotic optimality. First we may observe that for any p,
inf,d(S,, T, (1)) is actually attained by the continuity of d(m, Po(¢))in ¢ > 0, for
any measure m € 4. Also, by Theorem 1.1, Serfling’s approach was proven to be
asymptotically optimal for ¥7_, p, = 0 (n = ). Suppose now that ¥7_,p, = a
with 0 < a < o, and that max(p,,..., p,) = 0. Then for any optimal choice of
p, we have

d(T(n), T,(p)) < d(S,, T,(n)) + d(S,, T,(p))
<2d(S,,T,(p)) » 0

by Theorem 2.1, and since

2d(T,(p), T,(p)) 2| P(T,(r) = 0) — P(T,(p) = 0)|

)

we must have X7 p; ~ X7 | p,. But then we can conclude from Theorem 2.1
again that for any such p there exists some real £, with

n n n n
(3.1) 5 = zpi+sazpf+o(zpf),
i=1 i=1 i=1 i=1

implying that for any optimal choice of p,
(3.2) p~p+£,p° with p? = (pi,..., p?),
giving

d(S,, T,(r))

n
(3.3) ~iy pf||2§ae"AAeo + e“AA250]|
) i=1

VN

1 { @b (8- (1 - 2¢,)a) a"*‘(n—(l—zsa)a)} .
2 L. Di - e
L 8! 7!

12
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by Theorem 2.2 and the continuity of the left-hand side of (2.15) in ¢ > 0. Here

R

n= [(1 - ga)a + - {ggaz + (1 - ga)a + %}1/2]’

which shows that for optimaiity, we must have 0 < §, < 3, and

[

(3.5) ¢, = inf{§ e [0,1] a‘s“)"'(ﬁ)z(%;—: > 1} for a > V2,

where 8(£), n(£) are as in (3.4) with £, being replaced by £. Similarly, we can see
that for a < V2, §,= 1 is optimal as long as al®"1/[a + 1]'< 1, which is
equivalent to a < v2. This proves Theorem 1.3 completely. Similar arguments
show that under the situation of Theorem 1.2, we must have

-1
-Y n
(3.6) p~p+ E{EPL} p? forsomey > 0;
i=1

but then the right-hand side of relation (2.15) indicates that for an optimal
choice, we must have { = 1 which corresponds to y = 0. This proves Theorem 1.2
completely.

We shall conclude with a discussion of relation (3.5) which allows for a precise
evaluation of the second-order term in the minimizing p. Let D*(p) =a —p %
(a + p?)'/% for p = a¢, — 1. Since D*(p) is monotonically decreasing in p and
—1<p<(a—-1)/2(since 0 < £, < 3), and D*(p) must be an integer by (3.3),
we thus have

a+1sD+(p)s[a+%+(a+i
(3.7)

0<D (p)<[a+i-(a+1)"]
This proves the following result.

THEOREM 3.1. Let X, p, = a with V2 < a < o and max(p,,..., p,) = 0
for n - . Then

we 3 -

]a+1[st[a+%+(a+%)1/2]
(3.8) _

or 0<N< [a+%—(a+%)]}U{O},

where 1x[ denotes the smallest integer not less than x.
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3
For example, if V2 < a < V6, then the only possible value for N in Theorem
3.1is N = 3, from which we obtain

(3.9) £, = —(1 - =
Of course, by Theorem 2.2, we have £, — 0 for ¢ — oo.

4. Proofs of theorems. It remains to prove Theorem 1.1, Theorem 2.1, and
Theorem 2.2 only.

Proor oF THEOREM 1.1. Let m denote the distribution of S, and let
t=2%" A, Then
2d(m,Po(t)) 2|m({0}) — Po(¢)({0})] +|m({1}) — Po(£)({1})|
+|m({2,3,...}) — Po(¢)({2,3,...})|.
Put A =37 A, and h =t — A. It follows that
Y(ed—1-A)+A-eMA+ h)‘

=1

2d(m,Po(t)) > e”‘{ll —e M+

1+ Zn‘,(e*-—1—)\,.)+A—e"’(A+1+h)1}

+
i=1
= A(h)e 2.
For 0 < A <1 and & — 0, it can be seen that
A(h) ~2Y (eM—1-X;) +2hA — h + |A|
i=1
n
> Y (eM=1-21;) =A(0).
i=1

The result now follows from the fact that

1A(h) 21 -e "+ 'Z(ekf—1—>\i) +A—e A +h)

i=

> 1A(0) forh >0,

=1
and n
1A(R) =2 Y (eM—1-X)+A—e"A+h)
i=1
> JA(0) for h < 0.

The proof of Theorem 2.1 relies on the following auxiliary result.

LEMMA 4.1. For 0 < s,t < oo we have

e’te, — eey = (s — t)e'Ae, + R(s, t)
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with
| !
|R(s,t)| < Zmax{mm 1, " mm(l - }(s —t)%

ProoF. Let f € l' be arbitrary. Then from the general Taylor expansion for
the semigroup [cf. Pfeifer (1985a), Lemma 4.1] we have

e*f — e'f = (s — t)e™Af + /s(s — u)e““A%fdu
t
with
“f[s(s - u)e”AAzfdu” s’_/;sls — umax{|le**A%f ||, le*A%f ||} du
= §(s — t)’max(||e* A% ||, |e**A%f ||}

Now everything follows from the observation that by (2.13), we have ||e*442¢,|| <
4min(1,1/t).

PROOF OF THEOREM 2.1. For abbreviation, let ¢t = ¥ | p;,, s = X" u,, v =
Yr,pl,and t; =X, ,p. We have

(4.1) Aey = (—1,1,0,0,...) and A?%,=(1,-2,1,0,0,...),
hence
0 tk—l
(4.2) le*Aeyl| = et Y |t — k|,
k=0
o k-2
(4.3) let4A%ey|| = e * E ]t2 — 2kt + k(k — 1)|.
k=0

This proves (2.11) using relation (5) in Kerstan (1964), and the Schwarz in-
equality. In general, since the semigroup and the infinitesimal generator com-
mute, using the decomposition in the proof of Theorem 1 of Le Cam (1960), we
obtain for any fell

etf — l_[(I+p,A)f— P ;p2 e A%

=1

n

k_
Y pi)A{ D (I+pA)(eP4 — (I+p,A))f

i=k+1
Ao

P

o)l

n
2 exp
k=1

2 k=1
Dy
- _—exp(( Z D;

epkA —

él eXp(l kf:“p,) {kﬂl (I+ p;A)

Dy,

2 k—1 k—1
+———A2[]—[(I+piA)—exp Y
i=1 i=1

2
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which implies that

(4.4) |lete, — [T1(1 + p;A)ey — Lve A,
i=1

using the contraction property, Proposition 1.1.6 in Butzer and Berens (1967),
relation (2.5), the estimation (2.2) in Barbour and Hall (1984) and the fact that

lle*“A%f — e"AA%f || < p,|le“?A%f || < 8p/lI ]I,

which is to be proved similarly to Lemma 4.1.
The result now follows from the observation that

n
2d(sn’ Tn(“’)) = eSAEO - ]:Il(I+pi)A£0
=[(e%4 — et)e, + e'e, — I_I1 (I+pA)e,
i
tA v tApA2 %
=ll(s — t)e™Ag, + ¢ 'A%, || + 2rX(p) + 2s,(p, 1),
where

n

n
r(p) <5y pl+2) pimax(p,,..., p,)
i=1 k=1

by (4.4), and the estimation for s,(p, p) is due to Lemma 4.1.
ProoF oF THEOREM 2.2. It suffices to prove relations (2.12b) and (2.15) since

(2.13) and (2.14) are obtained from (2.15) for y = 0. Similar to (4.2) and (4.3), we
have

Iyt~ %e*Ae, + ™A%

tk—2 1 Y‘/Z
=e! k2 -2kt + — — — | + t(t —vt)|,
¢ ,EO k! 2 2 (¢= )
where
1 oyt
k2—2kt+§—7 +t(t—yt)>0

if and only if
kE<t—p—(p2+8)"" or k>t—p+(p2+8)""

This gives the left-hand side of relation (2.15).
Since by Stirling’s formula, we have

(4.5) Zii' ~ exp(t— (—lf—;t—t)){zwt}“/“’
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whenever w is integer such that w — ¢ = O(/t), the left-hand side of (2.15) is
asymptotically equal to

2 [t 1 2 1 1 $?
-‘/76 ({6—'4-?1’—' ~—tm {exp(—2—§2)+zexp(—?)),

as requested. To complete the proof, note that

1 1 x?
g(x)=xexp(—ﬁ)+ ;exp(—?) (x > 0)

is minimal for x = 1 with g(1) = 2/ Ve. The proof of (2.12b) is similar.
Note added in proof. Under the assumption that max{p,,..., p,} < § the

remainder term estimations in (2.11) and (2.12a) can be sharpened as follows. Let
A be a bounded operator on a Banach space & with ||A|| < 1. Then

(4.6) log(I + A) = (_ )
exists as a bounded operator on & with

(4.7) log(1 + A)[| < —log(1 — ||A])),
and

(4.8) exp{log(I + A)} = I+ A.

Under the situation of Theorem 2.1 (cf. also the corresponding proof) we thus
have, letting again t = X" ,p,,

i = [T +pa)f — 4 X ptfet %

=1

=1

(4.9)
= |ID|*
< |le*Cf || + |le*AD?f YERSYE
”kg() (k + 2)!

where

oC 1 n n
wio) - T Tatj-ar, p-ces{ e

k=3 R \i=1 i=1

From here it follows that with M, = max{p,,..., p,}, L, = —log(l1 — 2M,), we
have

(4.11) lle*4Cf || < %{ Y p} }Ile‘AABflleXp( n)>

i=1

n 2
(4.12) lle*D?f || < %{ ) p?} le A |[(1 + 4M,(1 + L,))".
i=1
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Generalizing (4.2) and (4.3), it is easily seen that
(4.13) lleAf || = [le™All, |l A%f || = ||le"4A?)|

for all f with || f|| = 1 (especially f = ¢,), such that the r.h.s. of (4.9) can now be
estimated by

%{En: p?}

=1

t
exp( EA)AQ exp(L,)

t
exp(EA)A

(4.14)

2 2

exp (1+4M,(1 + L))",

(1+2L, )Zp,

i=1

+%{z2p?}

=1

tA
exp( )A2

where the norm terms are now again given in (4.2) and (4.3). Especially, (4.14) is
an upper bound for the remainder terms 2r,(p) and 2r}*(p) in Theorem 2.1,
improving also the bounds in Kerstan (1964) and Barbour and Hall (1984)
(Corollary to Theorem 3) for large values of ¥, p, since by Theorem 2.2, if
X" | p, = oo and max(p,,..., p,) = 0 (n = o0), (4 14) is asymptotically

el £ [ £)”
tenl 2] £0] /[ £5)
omn{ £/ £5)

The foregoing remarks show that the additional condition in Theorem 1.2 can be
weakened to

M:

(4.15)

S p2=0(1) (n— ).

i=1
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