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Abstract Starting from well-known estimations for the rate 
of convergence in Hille's, Phillips' and Widder's representa­
tion formulas for operator semigroups we show that by/a suit­
able probabilistic approach, these results are easily reob­
tained, and can immediately be generalized to arbitrary (pro­
babilistic) representation formulas. Some examples are also 
considered. 
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INTRODUCTION 

As has been worked out in the recent papers [6],[7], probability 

theory has shown up to be a powerful tool within representation 

theory of semigroups of linear operators, especially in connection 

vith approximation - theoretic questions in this area. In fact, 

all relevant estimations for direct approximation theorems and 

uny estimations involving various kinds of moduli of continuity 

are covered by this approach. However, in t7] some questions con­

cernina certain indirect approximation th'orems remained open 

which we shall answer in this pap.er. Especially, we ahall ahow 

that Ditzian's [1J,[2],[3] estimations for the rate·of convergence 

for the most important semigroup representations of Hille, 

Phillips and Widder (see {4}) are-not only easily reobtain~d by 

the probabilistic approach, but also generaiiz~ tmmediately to 
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arb1'trary semigroup representations of probabilistic type (see' (61). ;' 

Throughout the paper, we shall consider a strongly continuous one­

parameter operator semigroup {T(t); t ~ O} of bounded endomorph isms 

on a Banach space X with norm II·" as in [7]. As usual, A will de­

note the infinitesimal generator of the semigroup, and 

R(A) - (AI - A) -1 stands for the resolvent of the seD1igroupwhich 

always exists for sufficiently large A. Further, let wb(a,f) de­

note the rectified modulus of continuity in the interval [O,bJ 

given by 

wb(~,f) - sup{IIT(t)f-T(s)fl\; O~s,t~b, Is-tl <~} (1) 

for b, a> 0, f € X. In 1960, Hsu [5J gave ,a first estimation for 

the rate of convergence in Hille's exponential formula in terms of 

the rectified modulus of continuity; he proved 

(2) 

for f (X, h> 0 (such that t + h % < b) where K i8 independent of f ,h 

and t, and ~is the difference operator given by 

1 
~f - h'(T(h) - I), h> 0, f € X. (3) 

In 1969 Ditzian [1] proved that in formula (2), the term h~3 could 

be replaced by any power hX with 0 < x < 1/2 , and that x could not be 

extended to values'larger than 12. (For an extension of this re­

lation to arbitrary semigroup representations of probabilistic 

type, see [7]). He also proved [2] that for x· %, a similar es­

timation holds true, however with a larger factor for the modulus; 

he obtained 

(4) 

for t < b - a (0 < <5 < bbeing fixed), and h small enoush, where 

again L'is independent of h ,and t. In [3], ,he developed analogous 

estimations for Phillips' and Widder's representation formulas; he 
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showed that 

(5) 

(6) 

for Buff iciently large n and A, where again t < b - ~, and K and L 

are independent of n, A, and t. Here"D(A) denotes the domain of 

the irifinitesimal generator A. 

It is no. surprise that the right hand side of (4), (5) and (6) 

are of the same type; this is essentially due to the fact that the 

.estimations involved here are.closely related to the variances of 

the underlying random variables when the probabilisti.c forms of 

the above representati.ons are considered (see [6] and [7]); this 

will be worked out in more detail in the following chapter. 

The basic tool here will be the concept of the probability 

generating function ~X of a suitable random variable X, given by 

x - * tX 
~X(t) - E(t,), t > 0 and ~X(t). E(e ), t ( 1l (7) 

where E(e) means expectation. 

MAIN RESULTS 

The basic estimation from which all relevant results can immedi­

ately be derived is given in the following statement. 

THEOREM 1. Let 0 S t S band assume that X is a random variable 

which is concentrated on the interval [O,b] with expectation 
2 2 

E(X)- t. Then the variance a • a (X) is (inite, and for all £ > 0, 

we have 

IIE[T(X)]f- T(t)fll s (l+£)wb(£,f), f(X 
£ 

(8) 
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'0 -b II E(t(X»)f - T(t)f II S 0(1 +g)w (e: ,Af), f ( D(A). (9) 

Proof. Under the conditions above, the moment-generating function -*--
~X exists everyWhere, hence E[T(X») is well-defined (see [6]). 

Further, 

IIE[T(X»)f-T(t)f1l s JIIT(X)f-T(t)fl!dP s Jwb(IX-tl,f)dP 

s J('l + l!::.tL)Wb(e:,f)dP S (l+£)wb(e:,f) 
e: . e: 

(10) 

for f (X since by the Jensen inequality (see (7], Theorem 2.1) ~ 

{E(IX_tl)}2~E({X_t}2)_02. Here P denotes the underlying p~o­
bability measure. This proves relation (8). 

Now assume f (D(A) • Then 

I 
(11) 

T(X) f - T(t)f - (X - t)T(t)Af + (X - t) j[T(t+ u(X - t» - T(t)]Af du, 
o 

hence 

, 1 
II E[T(X)] f - T(t)f II • II E«X - t) j[T(t + u(X - t» -T(t) 1Af du) II 

o 
~ E(IX-t!{l+ IX~tl})Wb(e:,Af)'SO(l+%)Wb(£,Af) (12) 

which proves relation (9). 

Since probabilistic representation theorems for operator semi­

groups are clo~ely related to the law of large numbers (see [6]), 

it is int~resting to see what kind of estimations can be obtained 

from the Theorem 1 in this case. For this purpose, X has to be 
- 1 n 

replaced by the arithmetic mean X - -I:k IXk where Xl"'" X are 
n n g 2, 2 n 

independent copies of X. Then for the variance, o· (X'n)'- 0 In, 

hence the following result holds. 

COROLLARY 1. Under the conditions of Theorem 1, andU 

Xl"'" Xn are independent copies of X, we have 

II E[T(X
n
)]f-T(t)f1l ~ (1+0)wb(n-11a,f), fE:X (13) 
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IIE[T(X )]f-T(t)fll s n-%a(1+a)wb(n-
1
/2 ,Af), f(D(A). (14) 

n 

Proof. Obvious by letting e:. n _112 in Theorem 1. 

It is no problem to extend the above results also to more 

general situations, i.e. arbitrary distributions for the under­

lying random variables. One such result is, the following. 

THEOREM 2. Let X be a non-negative random variable whose moment­
• generatin~ function 'l'x exists for some positive argument. Then for 

sufficiently large n, E[T{X )1 exists, and 
n 

IIE[T(x' )]f-T(t)fll S Kw
b(n-%,f)1 feX (15) 

n 

(16) 

. / 
where t - E(X), t < b - <5 (0< <5 < b being fixed), n being sufficient-

ly large, and K and L are independent of n and t. 

~. Define 

Then 

_ f Ilr(x )f-T(t)fll dP- fIlT(Y)f":T(t)flldP 
Ix - tl sc5 n n 

n 

S fwb<IY -tl,f)dP S (l+a)wb(n-%,f) 
n 

(where a2 again denotes the variance of X), and' 

* for 801Ile constant K > 0 (independent of nand t) by the proof of 
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~. 

Theor~ 5.1 in [7]. Thus 

IIE[T(X )]f-T(t)fll $ (l+0)wb(n-lh,f)+K"e-6liiUfll' 
n 

S 'KJ.Jjb(n-
1
/ 2 ,f) 

for some suitable constant K> O. This ptoves(15). For the proof 

of (16), observe that 

. II E [T (X )] f - T (t)f II S E ( II T (X ) f - T (Y ) f II) + ••• 
n n n 

••• + II EtT(Y )]f - T(t)fll 
n 

$ _ I IIT(X )f-T(t)fl~dP+ E(lx -Y 1)I\T(t) All! + 
Ix -tl>6 n n n 

n 

-% b -1/i ••• + n 0(1 + o)w (n ,Af) 

'$ K"e-6iii'lIfll'+ (E(X - t)2 fP (IX -tl >c5)L"IIA~1 
n n 

_1/2 b _112 
••• + n o(l+o)w (n ,Af) 

$ K"e-c5lii \lfll + oL""e-oIiiIlAf II + ••• 

•••• + n -1/20 (1 + o)wb (n _1/2 ,Af) 

+ ••• 

" "" by (12) and Holder's inequality for suitable connante L ,L > 0, 

which gives the desired result. 

An tmMediate consequence of Theorem 2 to general probabilis­

tic: representation theorems 'for operator semigroups is given in 

the following statement. 

COROLLARY 2. Let N be a non-negative integer-valued random variable 

and Y be a non-negative real random variable such that 'l'N(c5
l

) < co 

" , for some 6
1

> 1 and 'l'y(c5
2

) < co for some 15
2

> O. Then the expecta-

tions E(N) .; z: and E(Y) •. y (say) eXist, and for sufficiently large 
Y n . 

n, Sn • {'¥N(E[T(n)])} exists as a bounded linear operator. Then 
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1£ t - Z;y < b .. 15 (0 < 0 < b) being fixed), there exist constants K 

and L which are independent of nand t such that 

lis f-T(t)fll S; l(wb(n-
1
/2 .f), feX 

n . 

lis f-T(t)fll ~ Ln-%wb(n-%,Af), fe:D(A). 
n 

. Proof. Obvious from Theorem,4.4 and 5.2 in [7]. 
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(17) 

(18) 

It is interesting to notice, that Ditzian's estimations (5) 

and (6) (for integer values of A) are covered by Corollary 2, as 

well as a discrete version of (4) with h - l/n; here additionally 

a corresponding estimation for f € D(A) is at once ava"Hable (see 

[6] and [7]). Moreover, it is also possible to obtain the general 

estimations (4) and (6) by an application of the above Theorem to 

the situation under Theorem 4.2 in [7], using Poisson prQce.ses 

for Hille'. and P~illips' formulas. The missing estimation for 

Bill.'. formula then is 

(19) 

for t < b - 15 (0 < cS < b being fixed), and h small enough. 

It should be pointed out finally that Corollary 1 can immedi­

ately be applied to Kendall's representation formula using bi~ 

nomial distributions which has'an interesting application to 

Bernstein polynomials. Namely, we have (20) 

f € D(A) 

- ..,for 0 ~ t S 1, and b - 1. Applying this to the semigroup of transla­

tions as in [71, chapter 7, and letting, w denote. the modulus of 

continuity in the interval [0',1], we obtain for the Bernstein 

polynomials 
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n -

B (g,x) - r (nk)g(~)Xk(l- X)n-k, 0 ~ x ~ 1, n ~ 1, g E: C[O,l]: 
n k-O n 

(21) 

{ 

(1 + Ix(l-x»w(n _1/2, g) , g E: C[O,l] 
jB (g,x) -g(x)j ~ 

n I xo;;X) (1 + Ix(l-x»w(n _1/2,g'), g' E: ~[Q....1]. 

It should be pOinted out finally that. the arguments above can 

also immediately be applied to more general forms of operator semi­

group representations, for instance the product representation 

theorems developed in [6]. 
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