
POLY A-LUNDBERG PROCESS 

The P6lya-Lundberg process, frequently ab
breviated as Pblya process, is a stochastic 
process* with various applications in nuclear 
physics and insurance mathematics. De
pending on the context in which it is used, 
the P6lya-Lundberg process can be charac
terized as a pure birth Markov process*, a 
mixed Poisson process*, or a limit of con
tagion-type urn models * . Due to its Markov
ian character, the first approach is especially 
appropriate for the modeling and descrip
tion of physical processes such as electron
photon cascades (see Arley [2]; see also 
Bharucha-Reid [4] and the references given 
therein). As a weighted Poisson process, the 
P6lya-Lundberg process plays an important 
role in non-life insurance, as was shown by 
Lundberg [8], who fitted the P6lya process 
to sickness and accident statistics. Here the 
urn model approach provides a simple inter
pretation of the contagion property of the 
P6lya-Lundberg process (see also Beard et 
al. [3]; for a more advanced exposition of 
the corresponding urn process, see also Hill 
et al. [6]). Recently, some connections be
tween the P6lya-Lundberg process and re
cords* have been pointed out; for instance, 
the P61ya process can be considered as a 
counting process of record values coming 
from independent Pareto*-distributed ran
dom variables (see Pfeifer [10]). Conversely, 
the study of record values paced by a P6lya
Lundberg process gives an interesting insight 
into the probabilistic behavior of this pro
cess from a very different point of view (see 
Orsingher [9]). Lately, the P6lya-Lundberg 
process has been employed to illuminate 
structural properties of infinitely divisible* 
stochastic point processes with respect to the 
representation of the probability generating 
functional (see Waymire and Gupta [13]). 

In the Markovian setting, a P6Iya-Lund
berg process {N(/), I:> O} is a nonhomoge
neous birth process (see BIRTH-AND-DEATH 

PROCESSES) WIth bIrth rates 

A (I) = A 1 + an 
n 1 + aM ' 

1 :> 0, n = 0, 1, 2, ... , (1 ) 

where A, a > 0 are scale and shape parame
ters, respectively; that is, the probability of a 
new birth in the time interval (t, 1 + h) is 

given by An(t)h + o(h), while the probability 
of two or more births in this interval is o(h) 
for h~O. Here o(h) is a remainder term 
with o(h)/h~O for h~O. As solutions of 
Kolmogorov's backward differential equa
tions, the marginal distributions of the pro
cess are obtained, given by the P6Iya distri
butions 

n - I 

X II (1 + ak) (2) 
k=1 

for n = 0, 1, 2, ... and t :> 0 with mean and 
vanance 

E( N(t)) = At, var( N(t)) = 11./(1 + aM), 

(3) 

which also illustrates the meaning of the 
parameters A and a. As suggested by the 
formulas above, the P6lya-Lundberg pro
cess approaches a Poisson process* if a ap
proaches zero. 

As a birth process, the P6Iya- Lundberg 
process can also equivalently be described 
by the sequence Tn' n = 1,2, . .. , of birth 
occurrence times which form a Markov 
chain with transition probabilities 

( 1 + ali.I ) n + 1/ " 
Pr( Tn + I > s I Tn = I) = I + aM ' 

O « / « s (4) 

(see Albrecht [1] and Pfeifer [11]). As a 
special property of the P6Iya-Lundberg pro
cess, the sequence Sn = n/(l + aATn) forms 
a mean-bounded submartingale (see MARTIN

GALES). This provides a simple proof of the 
fact that for the time averages 

almost certainly (I, n ~ (0) (5) 

(see CONVERGENCE OF SEQUENCES OF RAN

DOM VARIABLES and Pfeifer [12]). Here A is a 
random variable following a gamma distri
bution* with mean A and variance aA2. 

In the setting of mixed Poisson processes, 
(5) gives a limit representation of the mixing 
random variable; that is, a P6Iya-Lundberg 
process can be considered as a weighted 
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Poisson process whose parameter is chosen 
at random according to the distribution of 
A. In risk theory*, the distribution function 
of A is also called structure function or 
unconditioned risk distribution. Characteris
tically, the P6lya-Lundberg process is the 
only mixed Poisson process whose birth 
rates for fixed time t are a linear function of 
n, as was proven by Lundberg [8]. 

Finally, the P6lya-Lundberg process can 
be represented as a limit of urn processes of 
contagion type introduced by Eggenberger 
and P6lya [5] (see also URN MODELS and 
Johnson and Kotz [7]). Here a certain num
ber of white and black balls is collected in 
an urn where P denotes the proportion of 
white balls and q = 1 - p the proportion of 
black balls. When a ball is drawn at random, 
it is replaced along with a fixed proportion 13 
(of the initial total number of balls) of the 
same color, which causes the contagious 
effect. If N m denotes the number of white 
balls drawn in m trials, the probability 
distribution of Nm is given by the P61ya
Eggenberger distribution 

_ _ (m) p<k.(3)q(m - k .(3) 

Pr(Nm - k) - k (3 I (m . ) 
(6) 

for k = 0, I, ... , m, where p(k.(3 ) denotes 
pep + 13) ... (p + (k - 1)13), etc., with 

1+ mf3 
var( N m ) = mpq I + 13 

(7) 

N ow if for m ~ 00, the portions P = Pm and 
13 = 13m are chosen such that 

(8) 

then N m tends to N (t) in distribution [i.e., 
the probabilities (6) approach the P61ya 
probabilities (2)]; similarly for the moments 

(7). A vivid interpretation of this could also 
be given as follows. Suppose that for a fixed 
time t > 0 a series of m drawings at times 
h,2h, ... , mh is made, where h = t / m and 
Pm = Ah, 13m = aPm' Further, let N*(s), s :> 0, 
denote the number of white balls drawn up 
to time s. Then N*(t) approximately behaves 
like a P6lya-Lundberg process with parame
ters " and a at time t in that 

Pr(N*(t + h) = n + II N*(t) = n) 

= Pm + nf3m =" (t)h 
I + mf3m n 

with birth rates "n(t) given by (1). 
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