PÓLYA-LUNDBERG PROCESS

The Pólya-Lundberg process, frequently abbreviated as Pólya process, is a stochastic process* with various applications in nuclear physics and insurance mathematics. Depending on the context in which it is used, the Pólya-Lundberg process can be characterized as a pure birth Markov process*, a mixed Poisson process*, or a limit of contagion-type urn models*. Due to its Markovian character, the first approach is especially appropriate for the modeling and description of physical processes such as electronphoton cascades (see Arley [2]; see also Bharucha-Reid [4] and the references given therein). As a weighted Poisson process, the Pólya-Lundberg process plays an important role in non-life insurance, as was shown by Lundberg [8], who fitted the Pólya process to sickness and accident statistics. Here the urn model approach provides a simple interpretation of the contagion property of the Pólya-Lundberg process (see also Beard et al. [3]; for a more advanced exposition of the corresponding urn process, see also Hill et al. [6]). Recently, some connections between the Pólya-Lundberg process and records* have been pointed out; for instance, the Pólya process can be considered as a counting process of record values coming from independent Pareto*-distributed random variables (see Pfeifer [10]). Conversely, the study of record values paced by a Pólya-Lundberg process gives an interesting insight into the probabilistic behavior of this process from a very different point of view (see Orsingher [9]). Lately, the Pólya-Lundberg process has been employed to illuminate structural properties of infinitely divisible* stochastic point processes with respect to the representation of the probability generating functional (see Waymire and Gupta [13]).

In the Markovian setting, a Pólya–Lundberg process $\{N(t), t \ge 0\}$ is a nonhomogeneous birth process (*see* BIRTH-AND-DEATH PROCESSES) with birth rates

$$\lambda_n(t) = \lambda \frac{1 + \alpha n}{1 + \alpha \lambda t} ,$$

$$t \ge 0, \quad n = 0, 1, 2, \dots, \quad (1)$$

where $\lambda, \alpha > 0$ are scale and shape parameters, respectively; that is, the probability of a new birth in the time interval (t, t + h) is

given by $\lambda_n(t)h + o(h)$, while the probability of two or more births in this interval is o(h)for $h \rightarrow 0$. Here o(h) is a remainder term with $o(h)/h \rightarrow 0$ for $h \rightarrow 0$. As solutions of Kolmogorov's backward differential equations, the marginal distributions of the process are obtained, given by the Pólya distributions

$$\Pr(N(t) = n) = \frac{(\lambda t)^n}{n!} (1 + \alpha \lambda t)^{-(n+1/\alpha)} \times \prod_{k=1}^{n-1} (1 + \alpha k)$$
(2)

for n = 0, 1, 2, ... and $t \ge 0$ with mean and variance

$$E(N(t)) = \lambda t, \qquad \operatorname{var}(N(t)) = \lambda t (1 + \alpha \lambda t),$$
(3)

which also illustrates the meaning of the parameters λ and α . As suggested by the formulas above, the Pólya–Lundberg process approaches a Poisson process* if α approaches zero.

As a birth process, the Pólya–Lundberg process can also equivalently be described by the sequence T_n , n = 1, 2, ..., of birth occurrence times which form a Markov chain with transition probabilities

$$\Pr(T_{n+1} > s \mid T_n = t) = \left(\frac{1 + \alpha \lambda t}{1 + \alpha \lambda s}\right)^{n+1/\alpha},$$
$$0 \le t \le s \quad (4)$$

(see Albrecht [1] and Pfeifer [11]). As a special property of the Pólya–Lundberg process, the sequence $S_n = n/(1 + \alpha\lambda T_n)$ forms a mean-bounded submartingale (see MARTIN-GALES). This provides a simple proof of the fact that for the time averages

$$\frac{N(t)}{t} \to \Lambda, \qquad \frac{T_n}{n} \to \frac{1}{\Lambda}$$

almost certainly $(t, n \to \infty)$ (5)

(see CONVERGENCE OF SEQUENCES OF RAN-DOM VARIABLES and Pfeifer [12]). Here Λ is a random variable following a gamma distribution* with mean λ and variance $\alpha \lambda^2$.

In the setting of mixed Poisson processes, (5) gives a limit representation of the mixing random variable; that is, a Pólya–Lundberg process can be considered as a weighted

PÓLYA-LUNDBERG PROCESS

Poisson process whose parameter is chosen at random according to the distribution of Λ . In risk theory^{*}, the distribution function of Λ is also called structure function or unconditioned risk distribution. Characteristically, the Pólya-Lundberg process is the only mixed Poisson process whose birth rates for fixed time t are a linear function of n, as was proven by Lundberg [8].

Finally, the Pólya-Lundberg process can be represented as a limit of urn processes of contagion type introduced by Eggenberger and Pólya [5] (see also URN MODELS and Johnson and Kotz [7]). Here a certain number of white and black balls is collected in an urn where p denotes the proportion of white balls and q = 1 - p the proportion of black balls. When a ball is drawn at random. it is replaced along with a fixed proportion β (of the initial total number of balls) of the same color, which causes the contagious effect. If N_m denotes the number of white balls drawn in *m* trials, the probability distribution of N_m is given by the Pólya-Eggenberger distribution

$$\Pr(N_m = k) = \binom{m}{k} \frac{p^{(k,\beta)}q^{(m-k,\beta)}}{1^{(m,\beta)}} \quad (6)$$

for k = 0, 1, ..., m, where $p^{(k,\beta)}$ denotes $p(p + \beta) \cdots (p + (k - 1)\beta)$, etc., with

$$E(N_m) = mp, \qquad \operatorname{var}(N_m) = mpq \, \frac{1+m\beta}{1+\beta} \,. \tag{7}$$

Now if for $m \to \infty$, the portions $p = p_m$ and $\beta = \beta_m$ are chosen such that

$$mp_m \rightarrow \lambda t, \qquad m\beta_m \rightarrow \alpha \lambda t, \qquad (8)$$

then N_m tends to N(t) in distribution [i.e., the probabilities (6) approach the Pólya probabilities (2)]; similarly for the moments (7). A vivid interpretation of this could also be given as follows. Suppose that for a fixed time t > 0 a series of *m* drawings at times $h, 2h, \ldots, mh$ is made, where h = t/m and $p_m = \lambda h, \beta_m = \alpha p_m$. Further, let $N^*(s), s \ge 0$, denote the number of white balls drawn up to time *s*. Then $N^*(t)$ approximately behaves like a Pólya–Lundberg process with parameters λ and α at time *t* in that

$$\Pr(N^*(t+h) = n+1 \mid N^*(t) = n)$$
$$= \frac{p_m + n\beta_m}{1 + m\beta_m} = \lambda_n(t)h$$
(9)

with birth rates $\lambda_n(t)$ given by (1).

References

- Albrecht, P. (1982). Zur statistischen Analyse des gemischten Poissonprozesses, gestützt auf Schadeneintrittszeitpunkte. Blä. Dtsch. Ges. Versich.-Math., 15, 249–257.
- [2] Arley, N. (1949). On the Theory of Stochastic Processes and Their Applications to the Theory of Cosmic Radiation. Wiley, New York.
- [3] Beard, R. E., Pentikäinen, T., and Pesonen, E. (1969). *Risk Theory*. Methuen, London.
- [4] Bharucha-Reid, A. T. (1960). Elements of the Theory of Markov Processes and Their Applications. McGraw-Hill, New York.
- [5] Eggenberger, F. and Pólya, G. (1923). Uber die Statistik verketteter Vorgänge. Zeit. angew. Math. Mech., 1, 279–289.
- [6] Hill, B. M., Lane, D., and Sudderth, W. (1980). A strong law for some generalized urn processes. *Ann. Prob.*, 8, 214–226.
- [7] Johnson, N. L. and Kotz, S. (1977). Urn Models and Their Applications. Wiley, New York.
- [8] Lundberg, O. (1940). On Random Processes and Their Applications to Sickness and Accident Statistics. Almqvist & Wiksell, Uppsala, Sweden (2nd ed., 1964).
- [9] Orsingher, E. (1980). Extreme values of a sequence of random variables associated with the linear birth and Pólya process. *Biom. Praxim.*, 20, 47–58.
- [10] Pfeifer, D. (1982). The structure of elementary pure birth processes. J. Appl. Prob., 19, 664–667.
- [11] Pfeifer, D. (1982). An alternative proof of a limit theorem for the Pólya–Lundberg process. Scand. Actuarial J., 15, 176–178.
- [12] Pfeifer, D. (1983). A note on the occurrence times of a Pólya-Lundberg process. *Adv. Appl. Prob.*, 15, 886.
- [13] Waymire, E. and Gupta, V. K. (1983). An analysis of the Pólya point process. *Adv. Appl. Prob.*, 15, 39–53.

(BIRTH-AND-DEATH PROCESSES CONTAGIOUS DISTRIBUTIONS MIXED POISSON PROCESSES POISSON PROCESS RISK THEORY STOCHASTIC PROCESSES URN MODELS)

DIETMAR PFEIFER