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Introduction 
It was in the Middle of the 1930's that E. Hille started to 

develop the theory of operator semi groups ending up with his 

famolls monograph 'ent it led "funct ional Analysis and Semi-Groups t! 

[15] published in 1948. A second enlarged edition co-

written with R.S. Philips appeared about a decade later [16]; 

here a ,first connexion of se~igrouns with probability theory was 

pOinted out, originating from a personal communication of the 

authors with M. Riesz. ,He as well as Kendall [19] was certainly 

insDirecl by Bernstein's [1] famous proof of Weierstrass' [32] 

annroximat ion theorem for cont inuous funct ions, gi ven complete ly 

in probabilistic terms; however, their a~~roach to semigroup 

theory was not consequent ly pursued eXCel)t for a paper by K. L. 

Chung [8] in 1962. Unfortunately, the basic formula [11, p.157] 

which could have been used to develop a more general probabilis­

tic renresentation theory for onerator semigroups was only given 

in a heuristic framework here, without formal proof. 

B~sides the investigation of problems concerning representa­

tion theory for onerator semigroups as such, attention was early 

drawn also to approximation - theoretic aspects in this field 

(for instance by Butzer [4], Hsu [17], Butzer and Berens [5], 

Ditzian [10 ~12], Shaw [30], Butzer and Hahn [6], and most 

recently by the author [26], [29]. Interestingly enough, in the 

papers before 1980 no exnlicit reference to probability theory 

was made, although probabilistic arguments were used here throug­

hout (such as Moment calculations and Markov-type inequalities 

or other estimations of what we call tail-probabilities). In fact, 
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it is possible to describe renresentation theory for onerator 

semigroups completely in probabilistic terms as has been shown 

by the author [21,23,25,26,29]; under mild as~umptions on the 

form of renresentation theorems, this apnroach is even exhaustive 

[24,26]. The full nower of these nrobabilistic methods, however, 

turns ou.t when a:pnroxilTlation-theoretic questions in this, a.rea are 

investivated [26,27~29]. In fact, probability theory enables us 

to simDlify to a great extend.·most of the relevant estimations 

beinv involved here, and even to extend them - thanks to the 

unified setting - to the widest possible generality. This gives 

a deen insight into the structure of such approximation problems, 

:providing at the SRJ1le time simple and illustrative answers to 

Questions that. had remained onen for almost ten. years (cf. Hsu 

[17], Butzer and Berens [5], and Ditzian [10,11])'~ 
In this naner, we shall mainly make use of SOJ1le elementary 

orobability theory, although for rlgorous proofs of SOJ1le theorems, 

a more advanced level is necessary. A reader feeling less 

familiar with this subject may have a look at one of the basic 

textbooks on probability theory, for instance Billingsley [3]. 

Ii Preliminaries: basic definitions and properties 
Throughout this ~aper, we consider a strongly coqtinuous one­

parameter operator semigroup {T(i); t~O} being a' subset o'f the 

Banach algebra &(f£,) of .bounded endomorphisms of a Banach space $' 

with norm II·'", characterized by the three conditions 

T (s+t) = T (s)T (t ) , s, t ~ 0 (the semiF,roup ~roperty); 

T(O)= I (the identity operator) ; (1.1) 

liM IIT(t)f-fll = 0, fES. 
tiO 

Although the la~t condition is a local cont'inuity condition only, 

strong eontinuity is readily obtained by means of the semigroup 

property; further, there exists constants M~l' and w~O such that 

t ~. 0 • ! (1.2) 

An important tool in semigroup theory is the infinitesimal 

generator. A with domain D(A) ~!E , given by 

1 
Af = lim il(T(h)-I)f =. lim Ahf , 

h~O hiO 
f E D(A) (1.3) 
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whereD(A) is the set of all f E Sf' fulfilling the limit relation 

(1.3). Obviously, A plays the role of a differential operator, 

and it can be shown that D(A) is a dense subspace of Sf'. (corres­

pondingly for the powers Ar, r~l, of A). With respect to the 

structure of semigroups, we have to distinguish between two dif­

ferent cases, i.e. whether A is a bounded or unbounded operator. 

In the first case, the semi group has a unique representation 

At ~ t k 
k 

T (t) = e =./.. k t A , 
k=O 

t ~ 0 , (1.4) 

implying also that the semigroup is even uniformly continuous. 

Conversely, every uniformly continuous operator semigroup has a 

bounded generator,. hence is of the form (1.4). In the second 

case, no such formula is available; however, several limit rela­

tions can be established in this situation, even with estimations 

for the rates of convergence. For instance, Hille's first ex­

ponential formula [15] states 

T (t ) f = lim exp (Ah t ) f , 
hi-O 

f E Sf' t ~ 0 (1.5) 

which means that although A might not be bounded, the semigroup 

oan be approximated by uniformly continuous ones, even uniformly 

in t in every bounded interval. In 1960, Hsu [17] gave an 

estima~ion for the rate of convergence for Hille's formula in 

terms of the rectified modulus of continuity 

wb (c,f)=sup{IIT(t)f-T(S)fll; O~s,t;:;;b, !s-t!<o}, fES,(1.6) 

c5 > 0 , 

he proved that 

(1.7) 

(such that t+h t / 3 <b) where K is independent of f, hand t (but 

possibly dependent of b, M and w). 

He also raised the ouest ion whether the expopent of h in 

(1~7) could be simultaneously increased for both summands (cf. 

also Butzer and Berens [5]). A positive answer for this problem 

was given by Ditzian [10] who proved that h tl3 could be replaced 

by h X with 0<x<1/2, and that x could not be extended to values 
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larger than 1/2. He also gave a complete treatise for the case 

x=1/2 [11] 

Another imryortant operator in semigrou~ theory is the re­

solvent R(A) defined as the Laplace transform 

(1.8) 

which is a bounded linear operator for \>(1); in this case also 

R(A) = (AI - A)-l (1.9) 

which shows its connexion with the infinitesimal generator A (see 

als0 Butzer and Berens [5] for a more general discussion). Since 

{ARC\); '\>il.J} forms a stT'ong annroximation process on 9E, two fur­

ther semiRrou~ renresentations - in terms of the resolvent - are 

of special interest, due to Widder and PhilliDs (see [16]): 

T(t) f 

T(t)f 

f E f£ 

1 im e xp ( - t .\ I + t.\ 2 R ( A ) ) f , 
:\-+00 

f E f£. 

For these representations, Ditzian [12] showed that 

" {I R (I)} n + 1 f - T (t ) f" ~ Kwb ( n - 1 / 2 , f), f E 91: 

where 0~t<b-6(0<6<b being fixed), and n>wb+1, and 

1/ e xp ( - t A I + t A 2 R ( A) ) f - T ( t ) f /I ~ Lw b ( :\ - 1 / 2 , f) , f E f£ 

(1.10) 

(1.11) 

(1.12) 

(1.13) 

where again O~t<b-o, and A>w. Here, K and L are independent of n, 

A and t. Better estimations are obtained for fE D(A); in this 
ca,se, 

lIexp(-tAI + t.\2R(.\»f - T(t)f 1/ 

.\>w , (1.15) 

where again K* and L* are independent of n, A and t. The rate 

results in (1.14) and (1.15) are best possible as was also shown 

00 

by Ditzian (loc. cit.), i.e. even for fE nD(Ar ), the results 
r=l 
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cannot be imnroved exceryt for the constants involved. 
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Surprisingly enouvh, it is possible to give very elementary 

p~obabilistic nroofs for the estimations (1.12) to (1.15), which 

at the same time allow for extensions of these to arbitrary 

semigroup representations (27). This will be treated in more 

detail in chapter 3. 

Also, it can be seen that the representation theorems men­

tioned above have a certain probabilistic form originating from 

a special version of the famous law of large/numbers for a random 

number of summands. This aspect will be worked out in more 

detail in the following chapter. 

2. The probabilistic setting of semigrouD representations 
We begin with a simple intuitive approach via the Widder 

inversion formula (1.10). Writing 

"R(,,)f f E!E , , ,,>w t (2.1) 

we see that this exnression could also be thought of as some "ex­

pectation" E[T(X)]f with an ex!,onentially distributed random 

variable X with mean 1/". Since for ,,-HlO, this distribution tends 

to the Dirac measure Eo concentrated in 0, and applying the 

strong continuity of the semigroup, we have 

AR(A)f E[T(X)]f+T(O)f = f, for 1..+00, (2.2) 

by weak convergence in the probabilistic sense (which here is at 

the same time strong convergence in /!E ), showing in a probabili­

stic way that {ARC A); A>w} is a strong approximation process on 

.%'. Similarly, if A=l/t (t>O) and {X k ; kEIN} are independent 

copies of X, we have 

n 
E [T(~ I Xk)]f -+ T(t)f 

k=l 

f E f£ (n-.r oo ) t (2.3) 

by the independence of {Xk : kEIN} (giving the second equality) and 

the (sirrlplG)weak law of large numbers (giving the limit relation), 

i.e. in dlstribution (in fact, under our con-
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ditions, convergence holds even almost surely). Rela~ion (2.3) 

is basically also given in Chung's paper [8], but was not proved 

to hold generally. Of course, this relation needs some clarifi­

cat ion. In this context, three main problems have to be con­

sidered: 
(A) The measurability- of the mal')r)in~ tt+T(t), and the 

precise definition of an "expectation" E[T(X)] as some element of 

c( ee). 
(B) The possibility of interchanging product and expecta-

t ion unaer (stochast ic) independence (as' is true in the case of 

merely real - valuedrandom variables). 

(C) The extension of weak convergence of measures to the 

case of operator-valued random variables. 

Concernin~ the first uart 6f A). there is a negative result in 

general. 

Theorem 2,.1 If lim inf I!T(t)-T("6)lI > 0 for some to>O (i.e. the 
t-}to 

semigroup is not uniformly continuous fro~ the right in some 

point to >0), then the mapping t t+ T(t) is neither strongly nor 

Borel-measurable (i.e. measurable with respect to the a-field 

generated by the operator topology), nor senarably valued. 

Proof see [25]. 

A simple example of a non-measurable semigroup is the semi­

group of left translat ions on the space S = U8C( lR) of all 

uniformly continuous and bounded functions onffi, given by 

T(t)f(x)=f(x+t) , xEm, t ~ 0, fE 8E. (2.4). 

Here always IIT(t)-T(s)1I = 2 for all s,t>O, s~t. The question 

whether a strongly continuous operator semip,roup is generally 

weakly measurable remains undecided since the dual space 6(6:)* 

is not explicitly known in most' cases. We thus do not know 

whehter E[T(X)] r)ossibly exists as a Pettis intep,ral in G(6;). 

However, a slight modification of Pettis' integral as introduced 

in [25] gives a solution of this problem. 

Definition 2.1' Let (A, Sf; ]J ) be a measure space and 8: A+ 6(6;) 

a mapping such that f*(8(·)f) is measurable (in the ordinary sense) 

for all f E 8E and f* E fEw. 8 is called lJ-integrable if there 

exists an element J E 6(81:) such that 
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f*(J(f» = fA f*(S( ·)f)dlJ for all fEill' , fItES*. (2.5) 

J is then called the lJ-integral of S: J'= £q S dlJ. If IJ is a 
probability mp.asure, then J will also be called expectation of S: 

J=E(S). 

The point here .is that the integral can (by the Hahn-Banach 

Theorem) already be uniquely defined by less linear functiooo'ls than 

the whole dual s9ace ~(sr)*. A sufficient condition for the 

existence of the (extended) integral is the following [25]. 

Lemma 2.1 If S(·)f is Borel-measurable and se~arably valued for 
every f E!E such that II S( ·)11 is dominated by some lJ-integrable 

function g~O (in the ordinary sense), then S(·) is extended Pet­

tis - integrable, and 

(2.6) 

holds. 

In our situation, S( ·J=T(X) with IIT(X)II ~ Mew~, and T(X)f is 

measurable by the strong continuity of T(·)f, hence E[T(X)] exists 

uniquely as an element of ~(ar) wbenever E(eWX)=~;{W)t the 

moment - generating function (or Laplace transform) of X, exists 

at w. Relation (2.6) then translates into 

IIE[T(x)]1I ~ M 1JJ; (w) • (2.7) 

The concept of extended Pettis integration also answers problem B). 

In fact, the following result· holds [25]. 

Theorem 2.2 If X and Yare non - negative, independent real 
random variables such that for the moment - generating functions, ' 

1JJ;(w) < 00, lJJ;(w) < QO , then 

E[T(X)T(Y)] = E[T(X)] E[T(Y)] • (2.8) 

Note that by independence, 1JJ;+y(lU) = 1JJ;<w)1JJ;<w), hence by the 
semigroup property, E[T(X)T(Y)] exists as an element of G(ar). 

Similarly, problem C) can be solved, at least for the law 

of large numbers [25]. 
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Theorem 2.3 If {Xk : kElN} are independent copies of a non-nega­

tive real random variable X for which 1/.1;«;) < 00 for some positive 
n 

8, and E(X)=t, then for n>w/o, E[T<* L X k )] E G(S), and the 
k=l 

limit relation 

(n -+ 00) (2.9) 

as well as weak convergence in the probabilistic sense holds under 

o~)erators, i. e. 

n 
E[T(l I Xk )] f -+ T(t)f , 

n k=l 

(in the strong sense in 9l' ) 

fEa: (n-+ oo ). (2.10) 

In fact, it can be shown that all known representation for­

mulas in product form are of such probabilistic type [25], and 

that under some positivity conditions, only such prooabilistic 

representations are possible [24]. This again emphasizes the 

importance of probabilistic methods in the analysis of such ap­

proximation problems. 

Before we are going to specialize on different distributions 

in (2.10) in order to reobtain the known representation theorems, 

we shall develop a further (seemingly more general, but in fact 

equivalent) representation theorem. For this purpose, the proba­

bility generating_function 1/.I N of a non - negative, integer -

valued random variable N will be needed, given by 1/JN(S) = 1/.I;(logs), 
n 

s > O. Equivalently, 1jJ (s) = I PCN = k) sk , s~· 0, which explains 
N k=O 

for the name. A further useful concept in the probabilistic 

approach to semi group theory is that of a random sum of random 

variables as was already pointed out by Chung [8], i.e. we consider 
N 

X= I Y k 
, where {Yk : kElN} are independent copies of some non-

k=! 
negative random variable Y which is independent of N. Then 1/.1*(.)= 

x 
1/.INC1/.I;C·», and it can be proved that if 1/.IN(1/.I;Cw» < 00, then 

00 

E[T(X)] 1: P(N=k) {E[T(y)]}k C2.11) 
k=O 

holds (see [25]). In this setting, Theorem 2.3 can be formulated 

as a product representation formula. 
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Tneorem 2.4 Let N be a non-negative integer-valued random variable 

and Y be a non-negative real random variable such that 1JJN(o~) < 00 

for some 01 > 1 and ¢ * ( 02 ) <: 00 for some 02 > O. Then the expect a-y 

tions E(N) = Z;; and E(Y) = y (say) exist, and for sufficiently large 

n, Sn = 1JJ N(E[T(t)]) E 6(!E) with 

(2.12) 

Further, a strong semigroup representation in product form 

fEe!' (n~oo) (2.13) 

holds with t = c:;y. 

It is also possible to establish a continuous analogue of 

relation (2.13) by means of stochastic processes instead of 

sequences of random variables [25]. 

Theorem 2.5 Let {NCr); T ~ O} be a stochastic process ranging 

through the non-negative integers and Y be a non-negative real 

random variable, fulfilling the following conditions: 

for some 01 > 1 and all T; 

for some 02 > 0; 

* rw lim sup 1jJN(T) CljJy(-:r» < 00 for some r > 1; 
T ~ 00 

1 - NCr) ~l;; E ill 
T 

in probability. 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

Then for sufficiently large T, ST=1JJ
N

(T)(E[T(f)]) E 8(S) with 

Further, a strong semigroup representation of the form 

(2.19) 

holds with t = Z;;y , where y=E(Y) 0" 

The following example shows. that relat ion (2.19) also covers 

the discrete version'(2.13): simply take independent copies 
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{N k ; kE]N} of N and let N(T) = )' Nk , T~O. Then by the law of 
1 ~k~T 

large numbers, ~N(T) ~ ~=E(N) (T~oo) even al~ost surely, and 

int(T) E 
1);N(T) = 1);/'1 • For T ]N, (2.13) now follows from (2.19) (note 

that in this examp.~e, conditions (2.14) to (2.16) are fulfilled 

under the assumptions of Theorem 2.4). 

It should be pointed out that the proof of Theorem 2.5 

depends on a version of the law of large numbers for random sums, 

i.e 

1 N(T) 

T l: Yk ~ Z;:'Y 
k=l 

in probability (T ~ 00) (2.20) 

(see [25], Lemma 2) where {Yk : kERn are indepenqent copies of Y, 

inde!)endent of the process {N(T); T ~ O} • 

The two most important subcases of Theorems 2.4 and 2.5 are 

gi ven by Y::: 'Y be inp; a const ant, leading to first main theorems, 

and Y being exponentially distributed with mean Y, leading to 

second main theorems (involving the resolvent). In these cases, 

relation (2.19) translates into 

fEet" (2.21) 

1JJ (llR (ll»f ~ T(t)f, 
N(T) t t f E sr (2.22) 

For instance, if {N(T); T~ a} is a Poisson process with parameter 

t (i.e. E(N(T»=Tt), we ha'v"e 1JJ (s)=exp(Tt(s-1», s~a, giving 
N(T) -

Hille's first exponential formula (1.5) and PhiLlips' exponential 

formula (1.11) (with z;:=t here) while Widder's inversion formula 

(1.10) is obtained from (2.13) with N:::l. A similar distinction as 

above can also -be ~arle for Theorem 2.4. We then have 

(n ~ 00) (2.23) 

(n ~ 00) (2.24) 

where again t = Z;:'Y. 

Consirlering especially binomial and geometric distributions 

over {a,l} and {a,1,2,···} , respectively, the probability generat­

ing functions are 
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and 

(1-1;;) + C: S , 

1 
1iJ N (s) = l+c:-(s 

s ~ 0 

(2.26) 

respectively. This gives rise to the following re~resentation 

theorems. 

{ (1- t ) I + t T (l )} n f -+ T ( t ) f, f E.%' (n-+oo) (Ke nd a 11 [19]) 
n 

(2.27) 

{(1+t)l-t T(l)}","n f -+ T(t)f , fE~ (n-+oo) (Shaw [30]) (2.28) 
n 

t }-n {2I-T(-) f-+T(t)f, 
n 

fE$(n+oo)(Shaw [30]) (2.29) 

{(l-t)I +t nlI(n)}n f -+ T(t)f, fE~ (n-+oo) (Chung [8]) (2.30) 

{(l+t)I -tn"R(n)}-nf-+T(t)f, fES (n-+oo)(Chung [8]) (2.31) 

{21 -.!!R (.!!)}-nf -+ T(t)f, fEf%' (n-+oo)(Pfeifer [2G]) (2.32) 
t t 

Notice that in Chun~'s formula (2.31) it is not necessary to assume 

w=o as in [8], and that relations (2.27) and (2.30) are only valid 

for O~t~l in the gener8l case (for uniformly continuous semi~rou~s, 

see [24), Theorem 2). 

Of course, a lot of further renresentation theorems of pro­

babilistic type are immediately available, amonv them nroduct for­

mulas as (2.13) even with unequal factors [25], or formulas in which 

the semigrou9 T(t) is renlaced by a truncated Taylor series if the 

infinitesimal v.enerator A is bounded (see [23-26]). 

Conversely, the following theorem holds [24]. 

Theorem 2.6 Let 1jJt be a real analytic function is some interval 

[0,6], f>l, with non-nevative coefficients. Then if 

f E g(' (n-+oo) (2.33) 

or 

{ ~J t ( n R ( n ) ) } n f -+ T ( t ) f , f E f!l' (n -+00 ) (2.34) 

holds for an arbitrary stron~ly continuous non-~eriodic operator 
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semigroun with IIT(t)!! > 0, then l/J
t 

is necessarily the probability 

~eneratin~ function of a non-negative integer-valued random vari­

able N with ECN)=t, i.e. the reDresentations (2.33) and (2.34) 

are Drobah~listic. 

For a sli~htly more general version of this theorem, see [26]. 

In fact, we are not aware of a renresentation theorem for strongly 

continuous operator semigrouns in nroduct form which is not ~ro­

babilistic (t.e. for which l/Jt has at least one negative coef­

ficient; see also [24], Theorem 2). However, for uniformly con­

tinuous semigrou~s, extensions from nrobabilistic to non-probabi­

listic representations are possible (loc. cit.). 

3. Implicntions for approximCltion theory 

o. Direct theorems 
In the nrecedin~ chanters it has become apparent that gener-

ating functions of random variables in connexion with the law of 

larv.e nUMbers are the main tool for the derivation of strong re­

Dresentation theorems in semigroup theory. We shall show here 

th?t with resnect to apnroximation-theoretic nuestions, the vari­

ance of the underlyin~ random variahles torether with the corres­

ponding ~eneratinv functions will ~lay the central role in this 

area. For this purpose, a more general Taylor expansion of the 

semigroup as developed in [26] and [29]) will be needed. 

Theorem 3.1 Let r?l and fE DCAr ). Then for arbitrary s, t~O, 

T(t)f-T(s)f= 
r-I 

" L 
k=1 

k _·t r-l 
( t - s ) T ( s ) AX f + I ( t - u ) T ( U ) A r f d u • 

k! Js (r-1)! 

(3.1) 

Since the remainder part in formula (3.1) is a strongly 

measurable function of the variables sand t by the strong con­

tinuity of the semiproup, we can' easily derive a probabilistic 

estimation for the rate of converv.ence for the different represen­

tation theo~ems worked out in chanter 2. For instance, if X is 

a non-negative real random variable with expectation E(X)=t such 

* that for the mOJl)ent-generatinp; function, l/Jx(3cu) < 00 , we have 

E[T(X)]f-T(t)f ~ °2
2 

T(t)A 2 .F+E[ ( (X;;U)2 T(u)A 3 f du] (3.2) 

for fE D(A3), where C 2 =cr 2 (X) denotes the variance E«X_t)2) of X. 
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Moreover, the remainder expectation can be estimated by 

which itself is dOMinated by (say) 
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(3.3) 

(3.4) 

which can be concluded from Hblder's inenuality. Since by Theorem 

2.3, in serni~roun re~resentation theorems tynically random vari-

abIes of the form are cons idered where {Xk : k E IN} are 

inde~endent conies of X, and in the case of inde~endence, variances 

are additive, we obtain from (3.2) to (3.4): 

n 
E [ T ( 1. ~ Xk ) 1 f - T ( t ) f 

n k:: 1 
~~ T(t)A 2f + O(n- 3 / 2 ) (n+ (0) (3.5) 

for fE D(A3) which means that the best rate of approximation in 

any of the discrete semigroup representations covered by Theorems 

~.3 and 2.4 is 0(n- 1 ) for n+ oo (and OCT -1) for Theorem 2.5 for 

T+OO , respectively, if for the variance o2(N(T»=0(T 2 ); (see [29]). 

Usinp: an extension of the famous central limit theorem in proba­

bility theory based on uniform integrability conditions (which here 

~re fulfilled by the existence of the moment-Renerating functions) 

it is even ~ossible to give exact F,eneral estimations for the rate 

of convergence for all probabilistic renresentation theorems in 

terms of the underlying generatin~ functions. For the sake of 

simnlicity, we shall ~resent some of these results under the situa­

tion of Theorem 2.4 only (for further details, see [29]). 

Theorem 3.2 Under the assumptions and with the notations of 

Theorem 2.4, we have 

for 2w 60 
n > max (n ' 1Jl N ( 1Jl ~ ( n) » and 0 < n :;; 0, if fED(A); 

(3.6) 
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P {til (F[T(Y)] ,}n-l> _ T'(t)f II' <: ~ewtl,l A2f,lt,fl-nl( to 2 CY)+v2(}2 (N»' + ••• ,I ,]If ,J • n' ), .1., : "" 2 - ' I 

4:) 
+~--

n,3 n /n (3.7) 

f (i~', 60 , ) dO;' , or n > max n' ~J 1': ( i~ ~ ( f') ) ) an '< n ~ 'J , i f 

(3.8) 

for n'" 00 , if f E D(A3), where the remainrler can be estimated by 

and 0 < 'i ~ 0 • 

It should be nointed out that in the above relations (3.6) to 

(3.9), the ex~ression ~a2(Y)+y2a2(N) is just the variance of the 
N 

composed random variable X=. IYk (cf. n.il, and Lemma 3 in Chung 
k=l 

[ 8] ) • 

Of course, refined estimations for the remainder terms above 

are nossihle f~rthe individu~lre~resentation theorems using 

characteristic ~roperties of the unde~lying :rtistributions; like­

wise for Theorem 2.5. For instance, iri Hi11e's and Phillips' 

exponential formulas (1.5) and (1.11), we can nrovide the following 

(l)robabi 1 ist ic) est imat ions. 

Theorem 3.3 Let t~O. Then 

for h~tt if fE nCA); 

lI exp(A
h
t)f-T(t)fl! ~ ~eU)tIIA2fll{ht+2/2h3t3 exp(2w 2 hte 4Wh

)} 

(3.11) 

for h~tt tf fE D(A2); 
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(h 4- 0) 

for f E DC A3), where the rem~dnder term can be est imated by 
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(3.12) 

~ el\Jt 11A3f II {3h3/2e;xp(~ e~lJ1) + 38!l'h2ex!")(~elh+~I))?hte3Wh)} 

(3.13) 

Also, 

II exp( -t AI +t A 2 R( A) )f -T (t HII $ Me "'til Afll {}¥+4 eAt exp( ~~; ~) } 
(3.14) 

for ,\ > max ( 4; 2 (.G), iff ED (A) ; 

for ,\ >max(16; 4w), if f E D(A2); 

(3.16) 

for f E D( A3), where the remainder term can be estimated by 

The oroof of this (which is given in [29]) jepends on the 

fact that for a Poisson nrocess {N(t); T > O} with uarameter t we 

have 

s ~ 0 , (3.18) 

and that for an exponentially'distributed random variable Y with 

mean 1, 

o ~ 8 < 1 • (3.19) 

Note that corresponding direct theorems for Widder's inversion 

formula (1.10) are covered by Theorem 3w2 with 02(Y)=t2,C~1 
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and 0 2 (N) == 0 (for ctetails, see [26] or [29], relation (4.37». 

Finally, it should be nointect out that also im9rovements of the 

rate of approximation in the renresentation theorems are possible 

usinv Bernstein's (2) and Voronovskaja's (31) apnroach of variance 

elimination. For instance, for Theorems 2.4 and 3.2, we have the 

fo]lowin~ result [29J. 

Theorem 3.4 Under the conditions of Theorem 2.4, we have 

(3.20) 

for n-+ oo , if fED(A 4
), which in E;eneral is the best nossible 

rate. 

It is possible to im~rove the order of approximation to any 

order O(n- k ) for n-+ 00 (k>2) by successive application of the above 

method (and for f being smooth enough); however, since moments 

higher than the third are involved in this case, it seems hardly 

nossible to give a nice simnle formula here. If, however, 

binomial distributions are considered (i.e. Kendall's [19] repre­

sentation, see (2.27», the correspondin~ mOMents still ar~ easily 

to COJ1")Dute. In this case, the following result holds true [?6]. 

Theorem 3.5 For 0 ~ t ~ 1 and f E D(A 6
) we have 

n 
II T ( t ) f - 1. ( kn ) t k ( 1-t )k {T ( ~ ) f - 21 t ( 1-t ) T ( ~ ) A 2 f -

k= 0 .. n n n 

(3.21) 

for n -+ 00. 

The proof of this theorem depends on the fact that if Xl"··' 
Xn are independent binomially distributed random variables over 

{O,l} with mean t~ then 

n\ t ( 1-t ) ( 1-2 t ) 
(3.22) 

n 
'Nhere X = ~ X 

n k=l k 
denotes the arithmetic mean of X1,·",Xn • 
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b. Modul i estimations 
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In this section, we shall come back to ~uestions treated ip 

chanter 1 concerning estimations of semigrou~ representations in 

terms of various kinds of moduli of continuity. Besides the re­

ctified modulus of continuity introduced in (1.6) we shall also 

deal with the local modulus of continuity w* Riven by 

w*( 0, t,:f) = su~{iIT(t)f - T(s )fll ; s ~ 0, Is - t I < 6} (3.23) 

for cS > 0, t ~ 0, f ElK, anrl the second r.1odulus of continuity 

w2(t,f) = sup{11 (T(s) - 1)2fll O~s~t } (3.24) 

for t ~ 0, fE S. Since for b> 0, we have 

O~t~b-o} (3.25) 

for 0 < b, we only need to consider the local modulus w*; rela.;.. 

tion (3.25) then allows for an immediate translation of the re....; 

suIts obtained to those involving the rectified modulus wb • 

Followin~ an idea of Chung [8], writing 

II E [T (X) ] f - T (t ) f II 

~ [J + J ] " T ( X ) f - T (t ) f II dP 
Ix-tl;;;s Ix-tl>s 

(3.26) 

for a suitable non-ne!!ative random variable X with mean E(X) = t 

(cf. (3.2), where P is the underlyinp,: nrobahility measure, and 

usinr, exnonential tail-probability estimations for pcIX-tl>c) via 

Markov's ineouality and the moment-generatinR function, the fol~ 

l.owinr; fundamental estimation can be obtained [26]. 

Theorem 3.6 If for the moment generating function, 1JJ;Co)<oo for 

some 0 > 2w , then for arbitrary s > 0, n ~ 0, f ES we have 

(3.27) 

An immediate consequence of Theorem 3.6 is the following 

resul t. 
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Theorem 3.7 Under the assumotions and with the notations of 

Theorem 2.4, we have 

(b.-x) 
II{WN (E[T(*)])}n f - T(t)fll~ w*(n-X,t,f) +Mewtllflle-n x··· 

* wN(wy(n» W2WN(W;(n» 
x 12 eXT) ( ) {1 + ex!) ( )} (3.28) 

<n-21In)2 n(n-2wlln)2 

4 2w 
n > JTlax(2 , -) and 0 < n < 0 ,where O<x<!. n n for 

Of course, similar estimations are also ~ossible in the set­

ting of Theorem 2.5. For the sake of sim9licity, we shall only 

state the corresryonding results for Hille's and Phillips' formulas 

(1.7) and (1.11). 

Theorem 3.8 For fE~ and O<x<!, we have 

x·· · 
21h 2wh 

x 12 exp(t e ) {1 + exp(w 2 ht e )} h > 0 (3.29) 

and 

* -x wt j!-X) 
;lexn(-tAI+t,X2R(A»f-T(t)fll ~w (A ,t,f)+Me ·llflie-' x··· 

A > max (4; 2 w) • ( 3.30) 

Of course, Theorem 3.8 immediately leads to (1.7) for x = i ' 
and to Ditziants [12] results. Note that corresponding estima­

tions for Widder's inversion formula (1.10) are covered by Theorem 

3.7. From a nrobabilistic ooint of view, it is no surprise that 
. 1 

in theorerns3.7 and 3.8, no extension to the case x = 2" or more is 

nossible in general. This is again due to the central limit 

theorem which says that under our condiiions, if again ~ denotes n 
the arithmetic means of Xl'·· ··,Xn (being distributed as X)., we 

have .[ii(X
n 

- t) ~ Z (n -+ co) where Z is a norma] ly distributed 

random variable with zero mean and variance a 2=o2(X). Thus for 

t.he tail probabilities P( I~n - t I > (lin) we have a strictly posi­

tive limit for n-+ co given by P( Izi >E) for every E > 0. In fact, 

it is nossible to show that the counter example of Ditzian [10, 

Examnle 3.2] using the translation semigroup (cf. (2.4» not .only 

works for Hille's exnonential formula (1.5), but also generally 

for nrobabilistic renresentation theorems. 
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Finally, we want to show that also for estimations involving 

the seconrl modulus of continuity w2 the variance of the underly~ 

ing random variables plays the central role as was claimed in 

Butzer and Hahn [6] only for eroups of isometric operators. 

Theorem 3.9 Let us assume that {T(t); t ~ O} is a contraction 

semigroup, i. e. M = 1 and w=O. Then, udner the conditions of 

Theorem 2.5, we have 

for f E.%' and T > O. 

Alternatively, with the notations of Theorme 2.4, we have 

for fEel' and n E IN. 

In both cases K denotes a generic positive constant. Note that 

due to w=O, the conditions on the existence of the generatin~ 

'functions in TheoreT 2.4 need not to be imposed here (see [29]). 

To give some examples, the corresponding estimations for the 

representations (2.27) to (2.32) are listed below (cf. [26]). 

Corollary 3.1 For nElli and a~pro~riate choices of t, we have for 

fE$ 

II { ( 1-t ) I + t T ( ~) } n f - T ( t ) f II ~ Kw 2 ( ~- , f ) , 

1I{(l+t)l-tT(~)}-nf-T(t)fll ~K(D2( Jt(~~t) , f) , 

II {2 I - T ( *) } -n f - T (t ) f" ~ K w 2 (J~ , f ) 

" { (l-t ) I + nR (n) } n f - T (t ) fll ~ Kw 2 ( J t (~~t) , f) 

11{(1+t)l-tnR(n)}-nf-T(t)fll~KW2(Jt(;~t), f), 

11{21-¥R Cr)}-nf-T(t)fll ~KW2( J32tn
2 

,f). 

(3.33) 

(3.34) 

(3.35) 

(3.36) 

(3.37) 

(3.38) 

Correspondingly, for Hille's and Phillips' exponential formulas 

(1.5) and (1.11), the following estimations are valid. 

Corollary 3.2 For h, A>O and fE 9E we have 
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I/exp(Aht)f - T(t)fll ~ KW2( J~t , f) (3.39) 

Ilex:n(-tAI + tA 2 R(A))f - T(t)fll ~ Kw 2 ( JT ' f) • (3.40) 

For the remainder of this chapter we shall discuss in short 

some nrobabilistic aspects of Ditzian's [12] estimations in 

relRtions (1.12) to (1.15) which were worked out in [27]. In fact, 

some of Ditzian's (loc. cit.) ideas can be used to establish the 

following fundamental probabilistic estimations. 

Theorem 3.10 Let O~t~b and assume that X is a random variable 

which is concentrated on the interval [O,b] with mean E(X) = t. 

Then tJ;; "exists everywhere, and a 2=o2(X) is finite~ In this case·, 

for all E > 0, we have 

/I E [ T ( X) ] f ..: T ( t ) f II ~ (1 + f) wb (E, f) for f E S , (3.41) 

/I E [ T ( X) ] f - T (t ) f II ~ a (1 + ~) (Db ( E , A f) for fED ( A) • (3.42) 

Especially, if X is replaced by the arithmetic mean in of indep­

endent copies of X as in Theorem 2.3, we have a 2(in ) = a2/n, hence 

with the choice E=n- J , the factors of wb in (3.41) and (3.42) 

~ecome independent of n. By a splitting technique as in (3.26) 

now Ditzian's [11,12] estimations are similarly reobtained, and 

even nroved to hold basically for all probabilistic representation 

theorems. Moreover, the factors for wb are now given a probab­

ilistic meaning since they can be expressed by the variances of 

the underlying random variables as well as the generating functions 

being involved (cf. Theorems 3.6 and 3.7). For instance, Theorem 

2.4 can be reformulated in this setting as follows. 

Theorem 3.11 Under the conditions and with the notations of 

Theorem 2.4, if 0~t<b-8 (O<o<b being fixed), there exist constants 

K and L such that for sufficiently large n, we have 

for f E [£ (3.43) 

11{tJ;N(E[T(~)])}nf-T(t)fll ~L n- J wb(n-J,Af) for fED(A). 

(3.44) 

Of course, similar estimations are available also for Theorem 
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2.5, leactin~ to the esti~ations in (1.13) and (1.15), w~ereas the 

estimations in (1.12) and (1.14) are covered by Theorem 3.11. 

4. Arplications to other fields of crnroximation theory 
As has been shown by Hahn [13,14] probability theory can suc­

cessfully be app~ied not only within the framework of oDerator 

semigroups but also in other fields connected with approximation 

theo~y (see also Lindvall [20]). However, a closer lo6k shows 

that the basic ideas there are almost the same as developed in 

this article; they are all in the spirit of Bernstein's [1] early 

paper of 1912. Moreover, it is possible to reobtain some of these 

results by specializing on the semigroup of translations introduced 

i~ (2.4); in fact, ~any convergence theorems involving for example 

Bernstein polynomials, Szasz - Mirakjan and Baskakov operators 

(which are all exponential operators and hence share many proper­

ties of probabilistic operators,see Ismail and May [18]) can be 

derived from semigroup re~resentation theorems, even with estima­

tions of the rate of convergence. For the three examples above, 

sim~ly take Kendall1s (2.27), Hille's (1.5) and Shaw's (2.28) re­

presentations. To give an examole, we shall list some results for 

the Bernstein polynomials [29], which are derived from Theorems 

3 • 2, 3. 4, 3 • 5 , 3. 9 , an d 3. 10 • 

Example 4.1 For gE e[O,l} and O~t~l we have with 
n 

B (g;t) = I (n)tk(l_t)n-k 
n k=O k 

II Bn (g; • ) - g ( • ) II ~ 0 (n-+oo) , 

IBn(g;t)..; get) I ~ IIg'lI Jt(!-t) ~ ~ n ElN, 2m 
if g' E e[O,l] , 

IBn (F,; t ) - g (t ) I ~ J!g"ll t ( 1-1: ) <~ nE IN 
n = 8n 

if gil E e[O,l] 

B n ( g ; t) - g ( t ) = g!l( t) t ( ~ ~ t) + 0 ( n - 3 / 2 ) , 

if gil' E C [ 0 , 1] (n -+ 00) 

(4.1) 

(4.2) 

, 

(4.3) 

(4.4) 

IBn(~;t) - t(~~t) Bn(g";t) - get? I ~ llf,;lLlt(1-t)(1-2t) 1+··· 

+ 3I\g(4)ll t 2(1_t)2 + Ilg(4)1I t(1-t)(6t 2 -6t+l) 
8n 2 24n 3 
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n E :rn , i f g ( 4) E C [ 0., 1 ] , 

(4.5) 

II B (g. t) - t (l-t) B (gil. t ) _ t (l-t ) (1-2t) Bn (g'" ,. t) + 
n' 2n n' 6n 2 

+ t2~~;t)2 Bn (g(4)jt)-g(t)1I = O(n- 3 ) , 

i f g ( 6) E C [ 0 , 1 ] ( n +00 ) ( 4 • 6 ) 

I I < jt<l-tl ( . ) Bn(gjt) - get) = Kw 2 ( 2n ' g) K a positlve constant, 

IBn (g; t ) - g (t ) I ~ (1 + It ( 1-t ) ) W 1 (n -I, g) 

IBn(gjt)-g(t)1 ~jt(~-t) (1 + v't(1-t)(u 1 (n- i ,g') 

for g' E C [0,1 ] 

(4.7) 

(4.8) 

(4.9) 

where W2 and WI now are the corresponding moduli of continuity 

for C[O,l]. 

Of course, similar-estimations can be given for the other 

two examples mentioned above (and many more); see [29]. 

For the remainder of this paper, we shall turn to some ap­

nroximation problems 'in probability theory in connexion with the 

Poisson convolution semigroup. A fir~t operator-theoretic ap­

oroach to the limit th60rems in this area is due to LeCam [7J, 

while a rigorous treatment by means of semi group methods was only 

recently given by the author [22,28] and Deheuvels and Pfeifer 

[9]. In fact, the Poisson convolution semigrouD can be considered 

as the discrete analogue to the semigrouD of translations, involv­

ing now a bounded generator A. To be more precise, consider the 

Banach snace £1 of all summable sequences, consisting of elements 

f=(f(O),f(l),···). Let further sk denote the Dirac measure con­

centrated in kE Z+ , and * denote the convolution operation, i.e. 

n 
f 1( g(n) = I f(k)g(n-k) , 

k=O 
nZ:O (4.10) 

for f, gEt I The n ag ai n f;lt gEt 1 , an d II f ;It g" ~ II f II II g " • 

Also, with respect to convolution, probability measures P over Z+ 

will be identified with the element (P({O}),P({1}),···)Et 1 

Then 
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Bf (4.11) 

defines a contraction on .,tl , and A = B - I is the (bounded) gener­

ator of the Poisson convolution semigroup, i.e. 

00 

t k 
T(t)f=eAtf= I -t 

P(t) * f f E.,t 1 (4.12) e k! €k1( f = , 
k=O 

where P (t) denotes the Poisson distribution over '7:+ with mean t. 

In this setting, 

( I + ! A)n f 
n 

B(n, t) n -- * I n 
f E £1 n ~ t (4.13) 

where now B(n,p) denotes the binomial distribution over {0,1,···, 

n} with success parameter p E [0,1]. Similarly, 

(4.14) 

with B(n,p) denoting the negative binomial distribution over Z+ 

with parameters nand p (see [26] and [29]). 

Since in probability theory, many convergence theorems are 

stated only in terms of convergence in distribution ~ ,it is 

necessary to look for an equivalent metric in order to achieve 

results on the degree of approximation. One such here is the 

total variation distance d defined for probability measures P, Q 

over Z+ l)y 

00 

d(P,q) sup{ iP(A)-Q(A) I; A~:lt} =~ 1. Ip({k})-Q({k}) I . 
k=O (4.15) 

A classical result of Poisson then says that 

d(B(n, t, 
iln pet»~ -+- ° (n+ oo ), (4.16) 

d(B(n, n~t); pet»~ + ° (n+oo). (4.17) 

But it is. easy to see that with f= (1,0,0,···) E £1 the distances 

in (4.16) and {4.17) can also be expressed as 
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n 1 II n n n II d(B(n, i1+t); P(t»='2 {tR(t)} f-T(t)f ,n;;;l. (4.19) 

While relation (4.18) is connected with an exnonential formula 

for bounded fenerators (see [16] or [22,28]), relation (4.19) is 

just an annlication of Widder's inversion formula (1.10). The 

estiMations worked out in chapter 3 now can he used to ~ive very 

nrecise results on the rlegree of a~Droxirnation for (4.19) (and 

basically, also for (4.18), see [26]). ~or instance, in both 

cases, the rivht hand side in (4.18) and (4.19) can be estimated 

by 

where for lar~e t, we have 

4(1+6(1) 
t/~'lTe 

(n-roo) 

(t-roo) 

(4.20) 

(4.21) 

(see Deheuvels and Pfeifer [9]). Of course, als6 other Poisson 

conver~ence theorems can be handled this way [26], and it is even 

nossible to choose different Metrics [28]. More research work in 

this area, using semigrou~ theory and its anproximation-theoretic 

asnects, is in nrovress. 
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