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Introduction

It was in the middle of the 1930's that E. Hille started to
develop the theory of overator semigroups ending up with his
famous monograph entitled "functional Analysis and Semi-Groups"
[15] published in 1948. A second erlarged edition co-
written with R.S. Philips appeared about a decade later [16];
here a .first connexion of semigrouns with probability theoryv was
pointed out, originating from a personal communicaﬁion of the

-authers with M. Riesz. .He as well as Kendall‘[19] was certainly
insvired by Bernstein's [1] famous proof of Weierstrass' [32]
anoroximation theorem for continuous functions, given completely
in probabilistic terms; however, their annroach to semigroup
theory was not conseguently pursued excent for a paper by K.L.
Chung [8] in 1962. Unfortunately, the basic formula {11, p.157]
which could have been used to develop a more general probabilis-
tic renresentation theory for onerator semigroups was only given
in a heuristic framework here, without formal proof.

Besides the investigation of problems concerning representa-
tion theory for onerator semigroups as such, attention was early
drawn also to apuroximation - theoretic aspects in this field
(for instance by Butzer [4], Hsu [17], Butzer and Berens [5],
Ditzian [10 =12], Shaw [30], Butzer and Hahn [6], and most
recently by the author [26], [29]. Interestingly enough, in the
papers before 1980 no exnlicit reference to probability theory
was made, although probabilistic arguments were used here throug-
hout (such as moment calculations and Markov-tyne inegualities

or other estimations of what we ¢all tail-probabilities). In fact,
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it is possible to describe revnresentation- theory for onerétor
semigroups comnletely in probabilistic terms as has been shown

by the author [21,23,25,26,29]; under mild assumptions on the
form of renresentation theorems, this annroach is even exhaustive
[24,26]. The full nower of these nrobabilistic methods, however,
turns out when annroximation-theoretic questions in this area are
investigated [26,27,29]. In fact, probability theory enables us
to simnlify to a great extend most of the relevant estimations
being involved here, and even to extend them - thanks to the
unified setting - to the widest possible generality. This gives
a deen insight into the structure of such approximation problems,
providing at the ssme time simnle and illustrative answers to
duestions that had remained onen for almost ten years (cf. Hsu
[17], Butzer and Berens [5], and Ditzian [10,111)%

In this naner, we shall mainly make use of some elementary
probability theory, although for rigorous’proofs of some theorems,
a more advanced level is necessary. A reader feeling less
familiar with this subject may have a lock at one of the basic
textbooks on probability theory, for instance Billingsley [3].

1. Preliminaries: basic definitions and properties

Throughout this vavper, we consider a strongly continuous one-
parameter operator semigrdup {T(f); t20} being a subset of the
Banach algebra ¢&(%) of bounded endomorphisms of a Banach space &
with norm |[+|| , characterized by the three conditions

T(s+t) =T(s)T(t), s,t 20 (the semigroup nroperty);
TO0)=1 (the identity operator) ; (1.1)

1im [T(t)f-f]l =0 , fE€X.
t40 :

Although the last condition is a local continuity condition only,

strong eontinuity is readily obtained by means of the semigroup

nroperty; further, there exists constants M21 and w20 such that

A

ITCe)] s M e¥ , tzo0 . (1.2)

An important tool in semigroup theory is the infinitesimal
generator., A with domain D(A) &€ & , given by

Af= lim H(T(n)-I>f= lim A,f , £ED(A) O (1.3)
BYo nyo
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where D(A) is the set of all f€X fulfilling the limit relation
(1.3). Obviously, A plays the role of a differential operator,
and it can be shown that D(A) is a dense subspace of &  (corres-
pondingly for the powers Ar, r21l, of A). With respect to the
structure of semigroups, we have to distinguish between two dif-
ferent cases, i.e. whether A is a bounded or unbounded operator.
In the first case, the semigroup has a unique representation

k
t

ot

Ak, t:0, (1.4)

w

&l

T(t) =e’f=_7J
k=0

implying also that the semigroup is even uniformly continuous.
Conversely, every uniformly continuous operator semigroup has a
bounded generator, hence is of the form (1.4). In the second
case, no such formula is available; however, several limit rela-
tions can be established in this situation, even with estimations
for the rates of econvergence, For instance, Hille's first ex-
ponential formula [15] states '

(%4

T(t)f= 1lim exp(A,t)f , feE&X , tz20 (1.5)

hio0
which means that although A might not be bounded, the semigroup
can be approximated by uniformly continuous ones, even uniformly
in t in every bounded interval., In 1960, Hsu [17] gave an
estimation for the rate of convergence for Hille's formula in
terms of the rectified modulus of continuity

wb(a,f)=sup{HT(t)f-T(s)fH; O0ss, tsb, |s-t|<§} , f€EXF, (1.6)
§>0 ,

he proved that

lexp(A,t)2-T(t)£]| < wP(n?/I8)+K||£|n!/3, fe€&F , >0 (1.7)

(such that t+h!’?

possibly dependent of b, M and w).

<b) where K is indewnendent of f, h and t (but

He also raiSed the aquestion whether the exnonent of h in
(1.7) could be simultaneously increased for both summands (cf.

also Butzer and Berens [5]). A positive answer for this problem

1/3

was given by Ditzian [10] who proved that h could be replaced

by h* with 0<x<1/2, and that x could not be extended to values



96 Dietmar Pfeifer

larger than 1/2. He also gave a complete treatise for the case
x=1/2 [11]

Another immortant cperator in semigroun theory is the re-
solvent R(X) defined as the Laplace transform ’

[}
R(N)E = J e ST(s) £ ds (1.8)
0
which is a bounded linear operator for A>w; in this case also
R(A) = (AI-a)™! (1.9)

which shows its connexion with the infinitesimal generator A (see
also Butzer and Berens [5] for a more general discussion). Since
{AR(A); A>w} forms a strong apnroximation process on &, two fur-
ther semigroun revresentations - in terms of the resolvent - are

of special interest, due to Widder and Phillins (see [16]):

T()f = lim {FR (D}, 1€XF (1.10)
n->o

T(t)f = 1im exp(-tAI + tA2R(1))f, fEX, (1.11)
A+

For these representations, Ditzian [12] showed that
n n\1n+1 -
HER DI t-1H2] s kP12, 1), tex (1.12)
where 0st<b-$(0<8<b being fixed), and n>wb+1, and
lexp(-tAT+ tA2ROO) - T(t)£] sLP (A" 1725y, fe&  (1.13)

where again 0st<b-§, and A>w. Here, K and L are independent of n,
A and t. Better estimations are obtained for f€ D(A); in this
case,

rn 1 * -
HER P e -T2 sk™n /2P (™72 a8), ns>wbtl  (1.14)

flexp(~t AT+ tA2R(A) )£ - T(t)E |

*A-I/zwb -1/2

S L (2 ,AT), Avw , - (1.15)

where again K* and L* are independent of n, A and t. The rate

results in (1.14) and (1.15) are best possible as was also shown

[os]
by Ditzian (loc. cit.), i.e. even for £€ N D(AT), the results
r=1
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cannot be imnroved excent for the constants involved.
Surprisingly enough, it is possible to give very elementary
probabilistic nroofs for the estimations (1.12) to (1.15), which
af the same time allow for extensions of these to arbitrary
semigroup representations (27). This will be treated in more
detail in chapter 3.
Also, it can be seen that the representation theorems men-
tioned above have a certain probabilistic form originating from
a special version of the famous law of large, numbers for a random
number of summands. This aspect will be worked out in more

detail in the following chapter.

2. The probabilistic setting of semigroup representations

We begin with a simple intuitive approach via the Widder
inversion formula (1.10). Writing

AR(WDE = J Ae’AST(s):fds s tEXE | w, (2.1)
(4]

we see that this expression could also be thought of as some "ex-
pectation" E[T(X)]f with an exnonentially distributed random
variable X with mean 1/)A. Since for A+», this distribution tends
to the Dirac measure e, concentrated in 0, and applying the
strong continuity of the semigroup, we have

AR(M) T = E[T(X)]f+>T(O)f = f , for IJ»o , (2.2)

by weak convergence in the probabilistic sense (which here is at
the same time strong convergence in & ), showing in a probabili-
stic way that {AR(X); X>w} is a strong approximation process on
Z. Similarly, if A=1/t (t>0) and {Xg; kE]N}‘are independent
conies of X, we have

X n X
E[ T(7§)]f =E[,I, T(7§)]f

]
=3

n 2 n
(FRPI 1= 1

n
E[TE T X1 » T()f , fE€EE (nre),(2.3)
k=1

by the independence of {X;: k€IN} (giving the second equality) and

the (simple)weak law of large numbers (giving the limit relation),

n
i.e, % y X, >E(X)=t 1in distribution (in fact, under our con-
k=1
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di;ions, convergence holds even almost surely). Relation (2.3)
is basically also given in Chung's paper [8], but was not proved
to hold generally. Of course, this relation needs some clarifi-
cation. 'Ih this context, three main prohlems have to be con-
sidered:

(A) The measurabilitv of the manning t»T(t), and the
precise definition of an "expectation' E[T(X)] as some element of
(&),

(B) The possibility of interchanging product and expecta-
tion unaer (stochastic) independence (as is true in the case of
merely real - valuedrandom variables).

(C) The extension of weak convergence of measures to the
case of operator-valued random variables.

Concerning the first pnart of A), there is a negative result in

general,

Theorem 2,1 If 1im inf [|T(t)-T(®)|| >0 for some to,>0 (i.e. the
tyto

semigroup is not uniformly continuous from the right in some
noint t,>0), then the mapping t» T(t) is neither strongly nor
Borel-measurable (i.e., measurable with respect to the o-field
generated by the operator topology), nor separably ﬁalued.

Proof see [25].
A simple example of a non-measurable semigroup is the semi-
group of left translations on the space & =USC(R) of all

uniformly continuous and bounded functions onIR, given by
T(tYf(x) =f(x+t) , x€R , tzO0, fe X, (2.4).

Here always ||T(t)-T(s)|| =2 for all s,t>0, s=t, The question
whether a strongly continuous operator semigroup is generally
weakly measurable remains undecided since the dual space &(&)*
is not explicitly known in most cases. We thus do not know
whehter E[T(X)] vnossibly exists as a Pettis integral in &(&).
However, a slight modification of Pettis' integral as introduced
in [25] gives a solution of this problem.

Definition 2.1 Let (A4, %#; 1) be a measure space and S: 4> S(&)
a mapning such that £*(S(+)f) is measurable (in the ordinary sense)
for all fEX and f* € " S is called p-integrable if there
exists an element J € 6(&) such that
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f*(J(f))=L¢f*(S(°)f)du for all f€X , T*EX*, (2,5)
J is then called the u-integral of S: JE=L¢,S du. If u is a
probability measure, then J will also be called expectation of S:
J=E(S)o

The point here is that the integral can (by the Hahn-Banach
Theorem) already be uniquely defined by less linear functiomals than
the whole dual svace &(&)*. A sufficient condition for the
existence of the (extended) integral is the following [25].

lemma 2,1 If S(+)f is Borel-measurable and sevarably valued for
every f€ & such that ||S(+)|| is dominated by some u-integrable
function g20 (in the ordinary sense), then S(+) is extended Pet-
tis - integrable, and

I L{S dunsf g du (2.6)
M

holds.

In our situation, S(+)=T(X) with [|T(X)] s Me®, and T(X)f is
measurable by the strong continuity of T(-)f, hence E[T(X)] exists
x)=w;(w), the
moment - generating function (or Laplace transform) of X, exists

uniquely as an element of & (&) whenever E(e”
at w. Relation (2.6) then translates into
NEIT(X 1] sM vy (o) (2.7

The concept of extended Pettis integration also answers problem B).
In fact, the following result holds [25],

Theorem 2,2 If X and Y are non - negative, independent real
random variables such that for the moment - generating functions, .

w;(w)< o w;(w)< © , then

E[T(X)T(Y)] =E[T(X)] E[T(Y)] . (2.8
Note that by independence, Y3 .(w)=¥3(w)¥py(w), hence by the
semigroup property, E[T(X)T(Y)] exists as an element of &(&").
Similarly, problem C) can be solved, at least for the law
of large numbers [25].
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Theorem 2.3 1If {Xk: kEN} are independent copies of a non-nega-
tive real random variable X for which w;(6)< «» for some positive

n
§, and E(X)=t, then for n>w/é, E[T(X ] X,)1€ (&), and the
k=1

limit relation
n

IBITGE T %01 sMOED > Me¥t  (nv ©) (2.9
k=1

as well as weak convergence in the probabilistic sense holds under

cverators, i.e.
I
BT 7 xp1f > T, FEE (n-w) .  (2.10)
k=1

(in the strong sense in &)

) In fact, it can be shown that all known representation for-
mulas in product form are of such probabilistic typve [25], and
that under some positivity conditions, only such probabilistic
repfesentations are possible [24]. This again emphasizes the
importance of probabilistic methods in the analysis of such ap-
proximation problems.

Before we are going to smecialize on different distributions
in (2,10) in order to reobtain the known representation theorems,
we shall develon a further (seemingly more general, but in fact
equivalent) reoresentation theorem. For this purpose, the proba-
bility generating function Yy of a non - negative, integer -
valued random variable N will be needed, given by wN(s)==w;(1ogs),
s> 0., Equivalently, wN(s)= § P(N=k) sk y S20, which explains

k=0
for the name. A further useful concept in the probabilistic

approach to semigroup theory is that of a random sum of random

variables as was already pointed out by Chung [8], i.e. we consider
N

X= 2 Yk s, where {Yk: kEIN} are independent copies of some non-

k=1
negative random variable Y which is independent of N. Then w;(')=

wN(w;(-)), and it can be proved that if wN(w;(m))<<m, then
E[T(X)] = 3, (E[T(Y)]) = § P(N=k) {E[T(D1}*  (2.11)
k=0

holds (see [25]). In this setting, Theorem 2.3 can be formulated
as a product representation formula.
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Theorem 2.4 Let N be a non-negative integer-valued random variable
and Y be a non-negative real random variable such that WN(ﬁi)< 0
for some §; >1 and w;(62)<iw for some &, >0, Then the expecta-

tions E(N) =¢ and E(Y) =y (say) exist, and for sufficiently large

n, 8,=V,(E[T(D)]) € 6(&) with
Isal = My (ui) . (2.12)
Further, a strong semigroup representation in product form

Wy BITO DI f » T(0)f, LEF (n->w) (2.13)

holds with t = gy.

It is also possible to establish a continuous analogue of
relation (2.13) by means of stochastic processes instead of
sequences 6f random variables [25].

Theorem 2,5 Let {N(1); 120} be a stochastic process ranging
through the non-negative integers and Y be a non-negative real
random variable, fulfilling the following conditions:

wN(T)(61)< o for some §; >1 and all Tt; (2.14)
w;(62)< o for some §, > 03 (2.,15)
1im+szp WN(T)(W§<%§))< © for some r > 1; | (2.16)
LN(t) 20 € R (1% ) in probability. (2.17)
Then for sufficiently large t , ST==¢N(T)(E[T(§)]) € (&) with
Isoll = M v, i) . (2.18)

Further, a strong semigroup representation of the form

Vyor) BITCOIE > T(OE ,  LEE (r »w) (2.19)

N(T)
holds with t =gy , where y=E(Y).

The following example shows that relation (2.19) also covers
the discrete version-(2.13): simply take independent copies
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'{Nk; KEN} of N and let N(1)= g Ng, 720, Then by the law of
15ksT

large numbers, %N(T) + £=E(N) (t1+=) even almost surely, and
WN(T)= w;"t’T) . For t €N, (2.13) now follows from (2.19) (note
that in this example, conditions (2.14) to (2.16) are fulfilled
under the assumptions of Theorem 2.4). )

It should be pointed out that the proof of Theorem 2.5
depends on a version of the law of large numbers for random sums,
i.e. '

N(T)
< 1 Y, > zy in probability (1~ ) (2.20)
k=1
(see [25], Lemma 2) where {Y,: k€IN} are independent copies of Y,
indenendent of the process {N(t); T2 0}.

The two most important subcases of Theorems 2.4 and 2.5 are
given by Y=y being a constant, leading to first main theorems,
and Y being exponentially distributed with mean Y, leading to
second main theorems (involving the‘resolvent). In these cases,
relation (2.19) translates into

wN”)(T(;t-?))f > T()E , TEX (tsrw) (2.21)
wNmég-R(%?-))f > T()f, €&  (1+0). (2.22)

For instance, if {N(t)j 7120} is a Poisson process with parameter
t (i.e. E(N(1))=1t), we have wN(T)(S)=exp(rt(s—1)),‘sgo, giving
Hille's first exponential formula (1,5) and Phillips' exponential
formula (1,11) (with z=t here) while Widder's inversion formula
(1.10) is obtained from (2.13) with N=1. A similar distinction as

above can also be made for Theorem 2.4. We then have

WATENI™E > T(1)E, tE€X  (n>w) (2.23)
Wy FRENIE » T(t)f, fEXF (n~>=) (2.24)

where again t = z7v.

Considering especially binomial and geometric distributions
over {0,1} and {0,1,2,+++} , respectively, the probability generat-
ing functions are
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l,UN(S) = (1-z) + s , sz 0 (2,25)

and
= 1 6
wN(s) = T¥-%s s Oss<1+1/¢ . (2.26)

respectively. This gives rise to the following renresentation

theorems.

[A-I+tTE)"t > T(t)1 , FEX (n=)(Kendall [19])
(2.27)

(1=t T(1)f , £EH (nvw)(Shaw [301)  (2.28)
f21 - 751 e ()L, fE€ & (n>w)(Shaw [30]) (2.29)
{(1-t)I +t nR(n)}" £> T(t)f, fE€X (nr»)(Chung [8]) (2.30)
{(1+t)I =t nR(n)} £ +>T(t)f, fEX (n>»)(Chung [8]) (2.31)
{21-%3 (%)}'“f > T(t)f, tE€EX (nw)(Pfeifer [26]) (2.32)

Notice that in Chung's formula (2.31) it is not necessary to assume
w=0 as in [8], and that relations (2.27) and (2.30) are only valid
for 0st<1 in the general case (for uniformly continuous semigrouns,
see [24], Theorem 2).

0Of course, a lot of further renresentation theorems of pro-
babilistic tyre are immediately available, among them nroduct for-
mulas as (2.13) even with unequal factors [25], or formulas in which
the semigroun T(t) is renlaced by a truncated Taylor series if the
infinitesimal generator A is bounded (see [23-26]).

Conversely, the following theorem holds [24].

Theorem 2.5 Let Y, be a real analytic function is some interval
[0,8], &>1, with non-negative coefficients. Then if

W (TENE > T()E,  1€X (now) (2.33)
or

{wt(nR(n))}nf + T(t)f, fEX (n ) (2.34)

holds for an arbitrary strongly continuous non-neriodic operator
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semigroun with HT(t)”?>O, then wt is necessarily the probability
generating function of a non-negative integer-valued random vari-
able N with E(N)=t, i.e. the renresentations (2.33) and (2.34)

are nrobahilistic.
For a slightly more general version of this theorem, see [26].

In fact, we are not aware of a renresentation theorem for strongly
continuous overator semigrouns in nroduct form which is not nro-
babilistic (i.e. for which Ve ﬁas at least one negative coef-
ficient; see also [24], Theorem 2). However, for uniformly con-
tinuous semigrouns, extensions from nrobabilistic to non-nrobabi-

listic renresentations are possible (loc. cit.).

3. Implications for approximation theory

a. Direct theorems
In the nreceding chanters it has become avparent that gener-

ating functions of random variables in connexion with the law of
large numbers are the main tool for the derivation of strong re-
nresentation theorems in semigroup theory. We shall show here
thet with respect to anproximation-theoretic nuestions, the vari-
ance of the underlyins random variables together with the corres-
nonding generating functions will nlay the central role in this
area, For this purpose, a more general Taylor expansion of the
semigroup as developed in [26] and [29]) will be needed.

Theprem 3,1 Let r21 and f€ D(AT). Then for arbitrary s, t20,

r-1

r-1 k i [t
vl (=80T nooyake +j oW p(uyaTfdu .
s

T(t)f-T(s)t= ] LS

Y
K (r-1)!

1
(3.1)
Since the remainder nart in formula (3.1) is a strongly
measurable function of the variables s and t by the strong con-
tinuity of the semiproup, we can-easily derive a probabilistic
estimation for the rate of convergence for the different represen-
tation theorems worked out in chanter 2. For instance, if X is

a non-negative real random variable with expectation E(X)=t such

‘that for the moment-generating function, w;(Sw)< o , we have
1 - 02 2 X (X"‘u)z 3
E[T(X)]f-T(t)f = 5 T(t)A2f + E[ S T(uw)A3f du] (3.2)
t

for fEN(A3), where ¢2=02(X) denotes the variance E((X-t)2) of X,
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Moreover, the remainder expectation can be estimated by

[as£]] 3 (e B(X-t]2) + wE((X-t)"e")} (3.3)

which itself is dominated by (say)

wt

o] § (e E(Ix-t]®) + w{E(X-1)*))?/ % V37 En)} (3.4)

which can be concluded from Holder's inequality. Since by Theorem

2.3, in semigroun renresentation theorems tynically random vari-
n

ables of the form % y X, are considered where {Xk: kKEIN} are
k=1

indenendent conies of X, and in the case of indenendence, variances

are additive, we obtain from (3.2) to (3.4):

o]

E[T(%fk§1 XO1E- T = 5= T(A2E+ 0 ?/2) (nrw)  (3.5)
for f€ D(A®) which means that the best rate of approximation in

any of the discrete semigroup representations covered by Theorems
2.3 and 2.4 is O(n!) for n+~ (and O(T ~) for Theorem 2.5 for

Tre respecti%ely, if for the variance o2(N(r))=0o(72); (see [28]).
Using an extension of the famous central limit theorem in proba-
bility theory based on uniform integrability conditions (which here
eare fulfilled by the existence of the moment-generating functions)
it is even nossible to give exact general estimations for the rate
of convergence for all probabilistic renresentation theorems in
terms of the underlying generating functions. For the sake of
simnlicity, we shall nresent some of these results under the situa-
tion of Theorem 2.4 only (for further details, see [29]).

Theorem 3,2 Under the assumptions and with the notations of
Theorem 2.4, we have

vy (BIT DI - T(Ht ]|

s Me HAfH{ =/702(Y)+y? GZ(N) + «o-
w2y, (Y (n))
—4—— b (v (n)) exp {— N ¥ }\r (3.6)
nn n(n-20/n)2 /
60

for n>max(2n—m , and 0<n<s, if fED(A);

RO ENE
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H{u'.u.c['r(i)})'}.“f.;T’(t)f!:-“ﬂ eVt || A2 1]} 1<r~2(V>+y2 S2(NY e s
n n e 2

A R 2024, (N v\\‘
+ —-—;;T—- {U)N(V (n))} exn{ CroAE (3.7)
for n > max (ém 4~—§3——-) and O’w\* if fE€D(A2);
ot YR Geyp(nd) ’ ‘ ’
{UN(E[T( )})”’f—T(t)f
= é;(goz(y)+y252(N>) T(t)a2f + 0~ 7%y (3.8)

for n+ ; if- fGED(A3), where the remainder can be estimated. by
M we 4 ,a 3 1 5 * 3/2 8w oE T2y e
g e A fﬂ{ = ns{d e (n))} nknzle(wY(ﬂ))r x

e?P (P3(n)) oy

—— -} (3.9)

n(n-3u/nd? o

x exp{

3w 45
for n> max( ‘, vN(WY(”)))

It should be nointed out that in the above relations (3.6) to

and 0<n<8 .,

(3.9), the exnression ro2(Y)+y202(N) is just the variance of the

comnosed random variable X=. } Y (cf. n.11, and Lemma 3 in Chung
[(81).

Ofvcourse, refined estimations for the remainderhterms above
are nossible fdr the individualireﬂreqentation theorems using
characteristic nropnerties of the underlying dlstrlbutlons, like-~
wise for Theorem 2.5. For instance, in Hille's and Phillips'
exponential formﬁlas (1.5} and (1.11), we can nrovide the following
(nrobabilistic) estimations.

Theorem 3.3 Let t20, Then
!Iexn(Aht)f-T(t)fH S M ew‘tﬂiAf{l {/ht+2uht exp(m?.‘hte2mh)} (3.10)
for hst, if f€ D(A);

4wh

nexp(Abt)f-—T(t)f” = %e‘*»’tuAZf;Q{ht+2,f2h3-t3 exp(2w?hte?®h))

. (3.11D)

for hst, if f€ D{A2);



Probabilistic Concepts of Approximation Theory in
- Connexion With Operator Semigroups

107
exp(Aut)E - T(t)f = 2L T()a2t+0h’/3) (ns0) (3.12)

for fE€D(A3), where the remsinder term can be estimatéd by

¥ev™ Pass {307 %exnct o) + ssinzexncte i mee 30} |
(3:13)
Also, :
lexp (-t AT+t X2R())) £ = T(t)f|| < Me “t] Az {I%EM'?; exp(?;—.‘*l%)}
, o o (3.14)
for X>max(4; 2w), if fED(A); |
ﬁexn(-tx1+t12R<X))f4'Tfﬁ)fﬁi %ethAzfﬁ{%3+6«§§-exp‘ifii>}
. o o (3,15
for X >max(16; 4w), if fGED(Az); o

exp (-t} I+t AZRODIE - T(8)F =% T()a2r+00 72/ %) (s w)

, (3.16)
for f£ED(A®), where the remainder term can be estimated by
. p ‘ X '
M wt ' 3 2t/3 [ 38w _t 3wt .
i !]A‘?f[!{ -"/i;_;_ e +“‘3‘-§- exp(s—s— } for

-Bu) % max(933w).

(3.17)
The nroof of this (which is given in [29]) Jdepends on the
fact that for a Poisson nrocess {N(t); 7 >0}
have

with narameter t we

w;(_,{)(m = exp(Tt(eS - 1)) , ‘520 ,

- (3,18)

and that for an exponentially distributed random variable Y with
mean 1,

*
Bwo(s) =
Y(

..

s ', 0Dz <1 (3.19)
Note that corresponding direct ;heorems'for'Widder's inversion

formula (1.10) are covered by Theorem 3.2 with o2(Y)=t2, ¢=1
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and 02(N)=0 (for details, see [26] or [29], relation (4.37)).
Finally, it should be nointed out that also imnrovements of the
rate of approximation in the renresentation theorems are possible
using Bernstein's (2) and Voronovskaja's (31) approach of variance
elimination. For instance, for Theorems 2.4 and 3.2, we have the
followine result [29].

Theorem 5,4 Under the conditions of Theorem 2.4, we have
110, (BIT) 11 - T(0)F - (202 (V) +y202(N)) »

BT DI A2E] = on2) . (3.20)

for n->», if fE€D(A"), which in meneral is the best nossible
rate.

It is possible to imnrove the order of approximation to any
order 0(n" %) for n+» (k>2) by successive apnlication of the above
method (and for f being smooth enough); however, since moments
higher than the third are involved in this case, it seems hardly
nossible to give a nice simnle formula here. If, however,
binomial distributions are considered (i.e. Kendall's [19] repnre-
sentation, see (2.27)), the corresnonding moments still are easily
to commute. In this case, the following result holds true [26].

Theorem 3,5 For 0<t<1 and fEDND(CA®) we have

n
Ny, k kopck 1 k cee
|ttt - Z (R A=t X (T - 5= t(1-IT(HIAE -

k=0 2
1 k 1 k
- 557 t(1-t)(1-2t)T(3)A3f+-Snztz(l-t)zT(;)A“f}u
= 0(n~%) (3.21)

for n- o,

The proof of this theorem depends on the fact that if X;,*--,
Xn are independent binomially distributed random variables over
{0,1} with mean t, then

T((Xp-t)®) = &5 t(1-t)(1-2t) ,
(3.22)
E((X,-t)%) = ﬁ% tz(l-t)2+-£§ t(1-t)(6t2-6t+1)
_ n
where X = ¥ X, denotes the arithmetic mean of X;,«++,X .



Probabilistic Concepts of Approximation Theory in
Connexion With Operator Semigroups - 109

b. Moduli estimations

In this section, we shall come back to questions treated in
chapter 1 concerning estimations of semigroun representations in
terms of various kinds of moduli of continuity. Besides the re-
ctified modulus of continuity introduced in (1.6) we shall also

deal with the local modulus of continuity w* given by

w (8, t,f)=sun{l|T(t)F-T(s)f]| ; s20, |s-t]|<8} (3.23)

for §>0, t20, f €%, and the second modulus of continuity

w2 (t, ) =sunill(T(s) - D2f] 5  Ossst } (3.24)
for tz20, f€X. Since for b>0, we have

wP(8,£) 2 sup{u*(8,t,£); Ostsb-6} (3.25)

for & <b, we only need to consider the local modulus w*; rela-
tion (3.25) then allows for an immediate translation of the re=
sults obtained to those involving the rectified modulus wb.

Following an idea of Chung [8], writing
IE[T(X)1f - T(t)f]

<

J +J W T(X)f - T(t)f]| dP (3.26)
lx-t|se Jix-t]>e

for a suitable non-negative random variable X with mean E(X) =1t
(cf. (3.2)), where P is the underlyving nrobahility measure, and
using exvonential tail-probability estimations for P(|X-t]|>e) via
Markov's inecuality and the moment-generating function, the fol-<

lowing fundamental estimation can be obtained [26].

Theorem %. If for the moment generating function, w;(6)<w for
some §>2w , then for arbitrary >0, nsé§, fEX we have

IEITCOTE = TeE)E]| € w'Ceyt, £)+Me N £l (e T2 Ep22m)+ e

+e2”t¢;<-2n)>*(,/w;<2w>+-ewt) i (3.27)

An immediate consequence of Theorem 3.6 is the following

result.
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Theorem 3,7 Under the assumptions and with the notations of
Theorem 2.4, we have

l _ (E-x)
ll{wN<E[T<—§)])}“,f-T(t)fug wr(n~ X, t, 1) +Me"T| £] ™" X oo
. .
b (v (n)) 29y (W5(M))
x V2 exn (X __) {1+exn (g——ﬁ——{fz—— )} (3.28)
{(n-2//n)2 n(n-2w/vn)?2

for n?>max(€% s %?) and 0<n<§ , where O0<x<3,

Of course, similar estimations are also nossible in the set-
ting of Theorem 2.5. For the sake of simnlicity, we shall only
state the corresnonding results for Hille's and Phillips® formulas'
(1.7) and (2.11).

neorem 5, For f an O<x<s, we have
Th 3.8 eEX d 3 h

(
Jexn(Ant)f = T(£)f] s w*(h*,t, ) +Ne | f] ™ X eee

2vVh 2wh

x V2 exo(t e "") {1+ exp(w2ht e““)} , h>0 (3.29)

and
1

- (3-X)
lexn(=tAI + tA\2R(A))F = T(t)f]| £ w (375, t,f) +Me | f]e™ oo

2t/% 2w?t
x /2 exn (/f:E) {1+ exp(3—5=

)}, A >max(4;2w).(3.30)

Of course, Theorem 3.8 immediately leads to (1,7) for x=

Wl

and to Ditzian's {12] results. Note that corresponding estima-
tions for Widder's inversion formula (1.10) are covered by Theorem
3.7. From a probabilistic voint of view, it is no surprise that
in theorems3.7 and 3.8, no extension to the case x = % or more is
nossible in general. This is again due to the central limit
theorem which says that under our conditions, if again in denotes

the arithmetic means of XI,--'}X (being distributed as X), we

have [n(X -t) P2 (n>e) wherenZ is a normally distributed
random variable with zero mean and variance o2=02(X), Thus for
the tail probabilities P(|X,-t]| >¢/vn) we have a strictly posi-
tive limit for n- » given by P(|Z|>¢) for every ¢ > 0. In fact,
it is nossible to show that the counter example of Ditzian [10,
Examnle 3.2] using the translation semigroup (cf, (2.,4)) not only
works for Hille's exnonential formula (1.5), but also generally

for probabilistic renresentation theorems.



Probabilistic Concepts of Approximation Theory in
Connexion With Operator Semigroups 111

Finally, we want to show that also for estimations involving
the second modulus of continuity w, the variance of the underly-+
ing random variables plays the central role as was claimed in

Butzer and Hahn [6] only for groups of isometric operators.

Theorem 3,9 Let us assume that {T(t); t 20} is a contraction
semigroun, i.,e. M=1 and ww=0. Then, udner the conditions of

Theorem 2.5, we have

e L 2 X2 $
10y o) BITEDE = TCOE| £ Kup (o= {202(V) + L= 02(N(0))}T, )
(3.31)
for f€EX and 1 > 0.
Alternatively, with the notations of Theorme 2.4, we have
(o (EIT(E) )37 - TCE ]| € Kup (2= {2o2(Y) + v202(M 1}, 6)
o n I ' ’<332)

for f€E&L and n€W,

In both cases K denotes a generic positive constant. Note that
due to w=0, the conditions on the existence of the generating
‘functions in Theore@ 2.4 need not to be impased here (see [59]).
To give some examples, the corresponding estimations for the
representations (2,27) to (2.32) are listed below (cf. [26]).

Corollarv 3.1 For n€EIN and appropriate choices of t, we have for
fexX

H{(l—t)I-FtT(%)}nf-T(t)fH < Kw, ( }Eiégii , ), (3.33)
{1+ T - 721728 - TCE) ]| < Kuy € /E%—;tl , D), (3.34)
121 - T(£)}778 - T(t)1]| < K, f% , ), (3.35)
[ €11 + nR(n) 1 - T(0) 2] s Koy ¢ [EEZED gy (3.36)
J{(1+t)I - tnR(n) }77f = T(£)F| € Kuw, ( 35%%55-, ) , (3.37)
!&I-%R(%)T”f—Tﬁﬂﬂ|§m%(j%gr, £) . (3.38)

Correspondingly, for Hille's and Phillips' exponential formulas
(1.5) and (1.11), the following estimations are valid.

Corollary 3,2 For h, x>0 and f€ & we have
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lexpca, )t - T(t)t] s ko ¢ [BE, £ (3.39)

lexn(=tAI + tA2R(A))f = T(t) ] gK%(E, £) . (3.40)

For the remainder of this chapter we shall discuss in short
some nrobabilistic aspects of Ditzian's [12] estimations in
relations (1.12) to (1.15) which were worked out in [27]. In fact,
some of Ditzian's (loc. cit.) ideas can be used to establish the

following fundamental probabilistic estimations.

Theorem 3.10 Let 0st<b and assume that X is a random variable
which is concentrated on the interval [0O,b] with mean E(X) =t.
Then w; exists everywhere, and g2=4(X) is finite. 1In this case,
for all € >0, we have

IEIT(XO1E-T()E] s (1+2w? (e, £) for fE&X (3.41)

IE[T(X)]1£-T(t)E] < c<1+§> w?(e, Af) for fED(A). (3.42)

Especially, if X is replaced by the arithmetic mean in of indep-
endent copies of X as in Theorem 2.3, we have oz(in)==02/n, hence
with the choice e=n"% | the factors of w? in (3.41) and (3.42)
become indenendent of n. By a spiitting techniqué as in (3.26)

now Ditzian's [11,12] estimations are similarly reobtained, and
even proved to hold basically for all probabilistic renresentation
theorems. Moreover, the factors for y? are now given a probab-
ilistic meaning since they can be expressed by the variances of

the underlying random variables as well as the generating functions
being involved (cf. Theorems 3.6 and 3.7). For instance, Theorem

2.4 can be reformulated in this setting as follows.

Theorem 3.11 Under the conditions and with the notations of
Theorem 2.4, if 0St<b-6 (0<8<b being fixed), there exist constants

K and L such that for sufficiently large n, we have

”WN(E[T(%)])}nf—T(t)f” gKmb(n"*, £) for fE€EX , (3.43)

H{wN<E[T<§->])}“'f_T<t>fu <L n"? wP(n~?,af) for fED(A).
(3.44)
Of course, similar estimations are available also for Theorem
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2.5, leading to the estimations in (1.13) and (1.15), whereas the

estimations in (1.12) and (1.14) are covered by Theorem 3.11.

4, Applications to other fields of cpproximation theory

As has been shown by Hahn [13,14] probability theory can suc-
cessfully be applied not only within the framework of ovnerator
semigroups but also in other fields connected with approximation
theofy (see also Lindvall [20]). However, a closer look shows
that the basic ideas there are almost the same as developed'in »
this article; they are all in the snirit of Bernstein's [1] early
paper of 1912, Moreover, it is possible to reobtain some of these
results by specializing on the semigroup of translations introduced
in (2.4); in fact, many convergence theorems involving for example
Bernstein polynomials, Szisz - Mirakjan and Baskakov operators
(which are all exponential operators and hence share many proper-
ties of probabilistic operators,see Ismail and May [18]) can be
derived from semigroup renresentation theorems, even with estima-
tions of the rate of convergence. For the three examples above,
simrly take Kendall's (2,27), Hille's (1.5) and Shaw's (2.28) re-
nresentations. To give an examnle, we shall list some results for
the Bevnstein polynomials [29], which are derived from Theorems
3.2, 3.4, 3.5, 3.9, and 3.10.

Example 4,1 For g€C[0,1} and 0£t21 we have with

N g n,_ k n-k
B,(gst) = ] ()t (1-t) :

IB,(g;°)-g()] — O (n+=) , (4.1)
n
IB,(g3t) = g(t)] <|lg'] t(i =) lé&/__ll , ne€EN,

if g'€cC[o,1] , S (4.2)
Bu(est) - gt ] sjlgny HA= el pew,

if g"€c[o,1] , (4.3)

B, (g;t) - g(t) =g"(t) 3—(—;—5& + 0(n=37/2)

if g"'E C{0,1] (n~» ) (4.4)

Bacest) - E222 B ey - geo)] s LESLjva-o aaey e

(4) (4)
xSl ey e Ll aaiey ot r-srey
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= “6onz * T128n7 i80n°
(4.5)
1By g5ty - EEZEL B (gnypy - BHIZUIZ20) g (g py 4 .,
2 - 2
+ B g4ty gy = o)

it g(®’ e cro,1] (nsw) (4.6)

iBn(g;t)-g(t)l < Kuw, ( /EL%%EZ , £ ) (K a positive constant),

|Bp(gst) - g(t)] s (1+ (It (n™?, &) (4.8)
B, (gst) - g(0)] B8 (1 4 ATTTED 0 (07 H g
for g'€ C[0,1] (4.9)

where w, and ! now are the corresponding moduli of continuity

for C[0,1].

Of course, similar*estimations can be given for the other
two examples mentioned above (and many more); see [29].

For the remainder of this paper, we shall turn to some ap-
vroximation problems ‘in probability theory in connexion with the
Poisson convolution semigroup. A first overator-theoretic ap-
broach to the limit theorems in this area is due to LeCam [7],
while a rigorous treatment by means of semigroup methods was only
recently given by the author [22,28] and Deheuvels and Pfeifer
[9]. 1In fact, the Poisson convolution semigroup can be considered
as the discrete analogue to the semigroun of translations, involv-
ing now a bounded generator A. To be more precise, consider the
Banach svace £! of all summable sequences, consisting of elements
f=(£f(0),f(1),*++)., Let further €, denote the Dirac measure con-

centrated in k€ Z* , and x denote the convolution operation, i.e.
n
fxg(n) = § f(k)g(n-k) , nz0 (4,10)

for £, g€4&' . Then again fxgel! , and |fxg| <|fllle
Also, with respect to convolution, probability measures P over z*
will be identified with the element (P({0}),P({1}),««s) €l .,
Then

-
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Bf = e, xf , fept (4.11)

defines a contraction on £* , and A=B-1 is the (bounded) gener-
ator of the Poisson convolution semigroup, i.e.
! ®© £k
T(t)t=etr= § e7F TTexxf =P)xf, f€p (4,12)
k=0 :
where P(t) denotes the Poisson distribution over Z* with mean t.
In this setting,

(1 + 0% =8m, Hxt teLr , nzt (4.13)

where now B(n,p) denotes the binomial distribution over {0,1,+°-,
n} with success parameter p€{0,1]. Similarly,

{%z@(%)}“f = B(n, E%E)% £, feQ? (4.14)
with B(n,p) denoting the negative binomial distribution over z*
with parameters n and p (see [26] aad [29]).

Since in probability theory, many convérgence theorems are
stated only in terms of convergence in distribution ? , it is
necessary to look for an equivalent metric in order to achieve
results on the degree of approximation. One such here is the
total Qariation distance d defined for probability measures P, Q

over Z* by

A(P,0) = sup{{P(A)-Q(A)|; ASZ} =2 ] [P({kH-QU{kD]| .
k=0 (4.15)

A classical result of Poisson then says that

d(B(n, Z); P(t)) » 0 (n+ ), (4.16)
d(B(n, =) P(t)) » 0 (n~> ), (4.17)

But it is easy to see that with f=(1,0,0,+++) € £' the distances

in (4.16) and (4.17) can also be expressed as

a(B(n, Ly; P =2+ ooy, nzt, (4.18)

o)t
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d(B(n, =)

1
) PN =3 H{%Ii(%)}nf-T(t)fll, nzl. (4.19)

While relation (4.18) is connected with an exnonential formula
for bhounded generators (see [16] or [22,28]), relation (4.19) is
just an arnlication of Widder's inversion formula (1.10). The
estimations worked out in chanter 3 now can he used to give very
nrecise results on the degree of apnroximation for (4.19) (and
basically, also for (4.18), see [26]). For instance, in both
cases, the right hand side in (4.18) and (4.19) can be estimated
by

%IlT(t)AZflen-z) (n>w) (4.20)

where for large t, we have

4(1+0(1))

T(t)A2f] =
I I tvZme

(t > =) (4.21)
(see Debheuvels and Pfeifer [9]). Of course, alsé other Poisson

convergence theorems can be handled this way [26], and it is even
nossible to choose different metrics [28]. More research work in
this area, using semigroun theory and its anproximation-theoretic

aspects, is in nroeress.
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