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1. Introduction

A premium calculation principle is a general rule that assigns a premium H to a given
risk X. Intuitively, H is what the insurance carrier charges (apart from an expense
allowance) for taking over the risk X. As a policy of premium calculation, the insurance
carrier might base his decision on a utility function u, which is assumed to be a monoton-
ically increasing, differentiable and concave function on R. The principle requires that
the utility u (0) before assuming responsibility for the claims be equal to the expected
utility E [u (H — X)] after taking over such responsibility in exchange for the premium H.
Mathematically X is a random variable, and H depends on X through its distribution
function and the utility function, as well. In the case u(0) = 0 we obtain the zero utility
principle given as
Efu(H-X)]=0.

So far this principle has been mainly of theoretical interest. If we take the utility function
as exponential, then the zero utility principle equals the exponential principle and has an
explicit solution. For twice differentiable non-exponential utility functions we have,
moreover, the variance principle as a first approximation, see Heilmann (1987). Since this
is the only approach known so far to deal with general utility functions, many authors
define a utility function as being twice differentiable, see Goovaerts and de Vylder (1979),
Gerber (1985), Reich (1986), Kremer (1986) or Heilmann and Schroter (1987).

In this paper, we show that for certain classes of not necessarily twice differentiable utility
functions — which will be characterized as being scale invariant — and for certain classes
of risk distributions where the expectation plays the role of the “natural” parameter we
find explicit representations for the zero utility premium. Further, comparisons with
other premium calculation principles are given.

2. Scale invariant utility functions

In this paper, we consider throughout continuous utility functions u: R — R, differen-
tiable at zero, with the following characteristic properties:

u@)y=0, vw@©=1 [normalization] (1)
x<y=u(x)<u(y), x,yeR [monotonicity] (2)
utx+ (1 —-ty)=tux)+(t —tu(y), x,yeR, 0<t<1 [concavity] 3)

Note that we do not assume that u should be twice differentiable.

Clearly, the normalization condition says that a zero quantity x (e.g., an empty financial
budget) has no utility, and that the absolute utility of “small” quantities x is almost
identical with that quantity (i.e., u(x) = x). The concavity condition says that the relative
increase of the utility becomes smaller when the size x of the quantity grows.

Suppose that % = {u,|a > 0} is a given family of utility functions fulfilling (1), (2) and
(3) above. We say that % is scale invariant if there exists some functionh: R* xR* - R*
with the property

U, (£X) = ptugg, o(x) forall a,u>0, xeR, 4
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where R* denotes the set of all positive real numbers. This notion of scale invariance
reflects the idea that structural properties of utility functions should not essentially
depend on the scale in which the variable x is measured [e.g., if x represents a monetary
quantity, there should not be basic differences whether the currency unit is DM or US-$
or £].

The following Theorem given a characterization for such classes of utility functions.

Theorem 1. Let u be a utility function in the sense of (1), (2) and (3), and g:R* - R™
be surjective. Then

_u@@x)

g@
defines a scale invariant class % of utility functions. Conversely, if # = {u,|a >0} is a
scale invariant class of utility functions and h (a, -) is surjective for at least one a > 0, then

there exists some utility function u and a surjective function g such that (5) holds for all
a>0.

u, (x): a>0,xeR 5

Proof. Given (5), we see that for all a, > 0,

LN T @)

where a’ is any solution of the equation g(a’) = g(a) u [which exists by the surjectivity
of g]. Since a’ depends in general on both a and g, it is clear that h(a, u) = a’ defines a
function h fulfilling (4), hence % is scale invariant.

Conversely, suppose that % is a scale invariant class of utility functions. Fix a > 0 such
that h(a, -) is surjective. Then for all ¢ > 0,

REBLY DN ), xeR

ua(cx)=cuh(a,c)(x)’ xe]R’
hence

Upa. (X) = , xeR.

By the surjectivity of h(a, ), there exists at least one ¢ > 0 with h(a,c) = ¢, for every

¢’ > 0. Choosing c appropriately we see that there exists a function g:IR* — IR* such that

c=g(c), i.e. h(a,g(c¢')) = ¢ and hence

u, (g(c)x)
gc) ’

for all ¢'eR*, which is (5). In particular, for the fixed a, we have

U, (x) = xeR,

u,(g(a)x)
g@

It remains to show that g is surjective. But for every u > 0, we have, with a still being
fixed,

u,(x) = xeR.

u, (8(c")x)
gy ’

u,(g(@)ux)
u, (“ X) = = quh(a,p) (X) = uuh(u.s(c“)) (X) =u

R,
g@pu *€
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where ¢’ = h(a, ). It follows that

u,(g(a) u X) _ U, (g(c")x)
g@u g(c")

, XeR,

pg(a)
gc)’

hence, denoting r =

we obtain, putting y = g(¢") x,

u,(ry) =ru,(y), yeR.

It follows that u,(r?y) =ru,(ry) = r?u,(y), u, (r*y) = ru, (r’y) = r* u, (y), and hence
by induction,

u,(r"y)=r"u,(y), neN,yeR.
Similarly,
u,(y)=u,(r"r "y)=r"u,(r "y), neN,yeR,
or, in general,
u,(r"y)=r"u,(y), neZ,yeR.

Suppose first that r #1. Lets, =r"ifr<lands,=r""ifr> 1, forneN. Thens, -0
for n — o0, hence

8O _ iy B )21,y 0,
y n->wo S.Y
i.e.
u,(y)=y, yeR.
In this case,
u, (1Y)
uh(a,p)(Y)= =y, YeR,

for all u > 0, independent of p, hence we are free to modify h in such a way that
h(a, ) = p, i.e. g(u) = u for all 4 > 0, which is surjective.

In case that r =1, we have g(c”) = g(a) u, and since g(a) u ranges all over R* when u
does so, we see that g is surjective, as requested.

This proves Theorem 1.  []

By relation (5), we see that in the case of surjectivity of g, we could likewise putu, = v

g(a)>
so that the re-parameterized family " = {v |c > 0} with

v (x) = u(zx)’ xeR

would be an equivalent representation of the class %, with the “natural” scale parameter
c>0.

Example 1. The following classes % = {u,|a > 0} of utility functions are scale invariant:
u(x/a)

1/a
with u(x) = min {x,1} =u, (x), xeR, g(a) =1/a

v, (x):=min{x,a} = [truncated linear utility] 6)

[exponential utility] @)

u, (x): = in —em] = sz)
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withu(x)=1—-e"*=u,(x), xeR, g(a)=12a

x2

X—7——, X<a
u, (x):= 2a - (x/a) [quadratic utility] 8)
a Xx>a 1/a
2 s
with u(x) = u, (), xeR, g(a)=1/a
X, x<0 . . -
u,(x):= {v ), x>0 (left linearized utility] 9)

with v (x) being an arbitrary utility function.

Note that the utility functions of type (9) are differentiable, but not twice differentiable
at zero in general.
If we assume that u, e % [where % is scale invariant] is twice differentiable at zero and
if we use the first three terms in the Taylor expansion of the generating utility function
u in (5), we obtain

u(x)zx+§x2

for values of x near zero, where ¢ = u” (0) < 0 by the concavity of u. If further the random
variable X denotes a risk with existing mean u and variance ¢2, the zero utility premium
H can approximately be calculated according to the solution of the equation [cf. Heil-
mann (1988), p. 154 f].

0=EIU(H—X)]zE[(H—X)]+§E[(H—X)Z]=H—ﬂ+§[(H—ﬂ)2 +d7,

giving
2

o
H=~ ____Q___z#_gaz

1+ /1—0%? 2

provided that ¢ o < 1. The zero utility premium H, for the given class % can hence also
be approximated by a variance premium, using the corresponding expansion

n = C@D L e@e,
g(a) 2
for values of x near zero, giving
g@)e g(a)
Hrxu—=>—c*~pu+=——H,—p, a>0.
2 g’

3. Scale families of risk distributions
In what follows we shall assume that the random variable X denotes a non-negative risk

with existing means u > 0 and finite variance 2. For a given distribution Q, let Q, denote
the scaled distribution defined by

Q,(A):= Q(—;A> (10)
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1
for all x>0 and Borel sets A =R, where —A = {a/u|ae A}. We say that the risk
I

distribution PX belongs to a scale family 2 of distributions if there exists a fixed distri-
bution Q such that 2 ={Q,|u>0}. If, in particular, PX=Q, and simultaneously
E(X) = u, u> 0, then 2 is also called a natural scale family of distributions since in such
a class, the expectation of the risk plays the role of the “natural” parameter. Note that
if X is an arbitrary risk with distribution Q and the expectation E (X) = 1, then the scaled
risks 4 X, u > 0 belong to the natural scale family # = {Q,|u > 0}, and the variances
grow quadratically with u: Var (uX) = u? Var(X) = u? 0%, u > 0.

Example 2. The following classes of risk distributions form natural scale families [in
terms of densities f,, u > 0}:

1
f,(x)=—e™", x>0 [exponential distributions] (11)
u
o axa—l B . ) .
f,x) =~ e ™ x>0(x>0) [gamma distributions] (12)
u) I'(%)
o—1 1 e
f,(x)= 7 x>0(x >1) [Pareto distributions] (13)
apu
1 2 o
f(x)=————e MM x>0 {log-normal distributions] (14)

N

1
Note that in general, if f is the density of a risk X with expectation E (X) = 1, then ~f <§>,
x > 0 is the density of the scaled risk pX, with expectation p. kA

4. Zero utility premiums in scale families

In this section we shall show that premium calculations based on the zero utility principle
can be essentially simplified if scale invariance is given, and the risk distribution is a
member of a natural scale family of distributions. In this case, the zero utility premium
can be expressed in terms of the net risk premium.

Theorem 2. Suppose that % = {u,|a > 0} is a scale-invariant class of utility functions
according to (4), and that the distribution P* of the risk X belongs to a natural scale
family 2. Suppose further that for all a > 0, the premium H, , is the unique solution of

the equation
Efu,(H,, - X)]=0

for a risk X with E(X) =1. Then the zero utility premium H, , for the scaled risk
Y = pX is in general also uniquely determined, and is given by

HM = /AHh(a_“)_l, a,u>0.

Proof. Let X be a risk with E(X)=1 and Y=uX, u>0. Then the premium
H:=H,, .1 is, by assumption, uniquely determined by the equation

Efuyg,,(H-X)]=0,
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hence
O0=p-0= ”E[uh(a,p) H-X)=E[uuyq,,H- X

=E[u,(u-(H-X)]=E[u,(uH-Y)],

which implies that u H = u Hy , , ; is a zero utility premium for Y. Suppose now that u H’
is another zero utility premium for Y. Then a correspond backwards calculation shows
that

E[uh(a,p)(Hl -X)]=0, a>0,

and hence H' = H by the uniqueness of H.
This proves Theorem 2. [

Theorem 2 says that for the general premium calculation, it suffices to calculate the
premiums for risks with unit expectation solely, from which the general solution is
obtained essentially via the mapping h which is a kind of inverse for the structural
function g of the class of utility functions.

The following result is concerned with the “converse’” question, i.e. whether the general
premium can be calculated from the general risk, with a particular choice of the utility
shape parameter a.

Theorem 3. Suppose that % = {u,|a > 0} is a scale-invariant class of utility functions
according to (4), and that the distribution P* of the risk X belongs to a natural scale
family 2. Suppose further that the map h(a, -) is surjective for at least one a =a, > 0,
say, and the zero utility premium H,  , is uniquely determined by the equation

Efu,,(H,, , — X)] =0

a0, M

and all risks X with E(X) = u > 0. Then the premium H,. , is in general also uniquely
determined, and is given by

o

(ao) H

Ha’.1= (@) agg(a’)/g(ao)?

a >0,

o

where g is as in (5).

Proof. By Theorem 1, we can assume that the utility functions u, possess a representation
according to relation (5). Fix a, > 0 such that H, , is uniquely determined by the
relation E[u, (H,  , — X)] = 0 for all risks X with E (X) = u > 0. If we put, in particular,
u:=g(a’)/g(a,) for arbitrary a’ >0 and Y := X/u, then Y is a risk whose distribution
belongs to the same scale family &, with E(Y) =1, and

E [u <g (@) {g (a‘,’) H,, . — Y})] =E[u(g(ag)(H,,,, — XN =0
g(a)

which implies that

& g@) ' g@) 20,8(a')/g(a0) >

as requested. The uniqueness of H,. ; now follows from the uniqueness of H,  ,. [J
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If we apply Theorems 2 and 3 in the special case of g(a) = 1/a [examples (6) and (8)] or
g(a) = a, a > 0, respectively [example (7)], we obtain

’

Hyp= oH, pyes a8, 4>0 if g@)=1/a,a>0, (15)
a

Hy = oHy e 28,0>0 if g@)=a,a>0. (16)
a

In particular, zero utility premiums can in these cases easily be obtained from the
premiums H, . for ¢ > 0, which might be an alternative to the procedure in Theorem 2:

H,,=aH, ., au>0 if g@ay=1/a,a>0, an
1

H,,=-H,,,., au>0 ifg@a=aa>0, (18)
a

which means that in these cases, the graphs of H, , differ only in a simultaneous
proportional rescaling of the two plot axes, for different values of a > 0.

5. Numerical Examples

In this section, we shall present some numerical evaluations of zero utility premiums for
the utility classes given by (6), (8) and (9), for risk distributions of exponential- and
Pareto type [relations (11) and (13)].
Example 3. [Linear truncated utility]

Recall that the utility functions are of the form u, (x) = min {x, a} here; xeR, a > 0.

i) Suppose the risk distribution is exponential with unit expectation (cf. (11)). Then we
have, for HeR,

a—e W 2 Hx>a
E[ua(H—X)]={H_1’ He<a, (19)
from which it follows that
T
and hence, by Theorem 2 or relation (15),
u, O<pu<a
Ha,p=#-Ha/u,1={a+uln<§>, p=a. (21)

Note that here the zero utility premium is linear for small values of y, i.e. the zero
utility premium coincides with the net risk premium here, and that u” (0) = 0 so that

a formal application of the variance principle approximation would likewise yield
H, =~u
au
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i) Suppose the risk distribution is of Pareto type with unit expectation (cf. (13)), with
shape parameter o > 1. Then we have, for HeR,

Rt
E[u,(H-X)1={a_ ) e 22)
H_is HSa

from which it follows that

H,, ={ ¢/a’ (23)
>1

and hence, by Theorem 2 or relation (15),
u, gosu<a

a——a,u+ocul/§, n=a. (24)

Note that in this case, for « — oo, the Pareto distribution converges weakly to the
exponential distribution; likewise converges the zero utility premium of the Pareto
distribution to that of the exponentia} distribution.

Ha,p = H : Ha/p,l = {

Example 4. [Quadratic utility] 5
X

X——, x<a
Recall that the utility functions are of the formu, (x)=(, 22 here; xeR, a>0.

-2‘, X>a

i) Suppose again that the risk distribution is exponential with unit expectation (cf. (11)).
Then we have, for He R, after some elaborate calculus,

aZ? —2e ®-
2a
@-1D-—H-@+1D)P
2a ’

H>a

Efu,(H-X)]= 25)

Hx<a,

from which it follows that

a2

—In| -, <./2

Haf{a n<2> a2 (26)
a+1—.,/a*-1, ax>1

and hence, by Theorem 2 or relation (15),

a+pu—Jar—u?, OSusa/\/f
Ha,u=“‘Ha/u,l={

(27

2

2
a+uln<?/:—>, uZa/ﬁ.
2

Note that the variance principle approximation would yield H, , ~ p + g— for small
a

values of y here since g =u" (0) = — —.
a
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(i) Suppose again that the risk distribution is of Pareto type with unit expectation (cf.
(13)), with shape parameter « > 1. Then we have, for HeR,

,  2a H—a\ ¢
a = 1+ "
H

5 , >a
a
E[u,(H - X)} = 241 (28)
(az— )—(H—(a+1))2
, H<a,
2a
from which it follows that
a—ao + 1 a< |/ 1
H,, (29)
a+1
1 —
. W Wfea
and hence, by Theorem 2 or relation (15),
o + 1 -1
at+pu— a — 1
Ha,p =p Ha/u.l = (30)

Y 2apu? 1
a—aput+ou m,

Again we see that for « — co, the zero utility premium from the Pareto distribution
converges to the zero utility premium for the exponential distribution.

Example 5. [Left linearized quadratic utility] x<0

0<x<a here

X, 2

Recall that the utility functions are of the form u, (x) = x= 2a’
a

5 x>a
xeR, a> 0. In particular, u, is not twice differentiable at the origin.

Suppose again that the risk distribution is exponential with unit expectation (cf. (11)).
Then we have, for He R, similarly as before,

a?42e H_2eg W-a

a R H>a
E H-X)] = 31
e DRa-(H-1) -1 1)

H<a.

2a
This equation can explicitly be solved only for H > a, giving
2(e* —1

H, , =1n(—(—ea2—)>, a<a,=11760... 32)
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and hence, by Theorem 2 or relation (15),

2u? (™ —1) a
Ha,u=”'Ha/u,l=“ln<T , /.lZa_ (33)
0
The left branch of the general zero utility premium is the solution of the equation
20t 4 (H— ) 22— (H — ) =, for p<—. (34)

0

Note that no variance principle approximation in the usual sense is possible here since
1
u”(0) does not exist. However, u’, (0) = — — [right second derivative], u” (0) =0 [left
a 2
second derivative], which implies that H, , should lie between 4 and u + 5— for small
: a

values of u* (see (37)). However, if we formally replace H by u + ¢ u? in (34) for u > 0 and
divide by u2, we obtain the equation

2
Ee’°“+2ac—czu2—1=0. (35)
Considering the limit for u — 0 in (35), we see that ¢ must take the value
e—2
= . 36
¢ 2ae (36)
4arH,, Zero utility premium (1) 2 5
3.
3a
6..-
2a 1
" a.
a
I3
0
0 05a a 1.5a 2a

Exponential risk distribution

1.: truncated linear utility, 2.: quadratic utility, 3.: left linearized quadratic utility, 4.: net risk
premium, 5.: approximative variance principle (quadratic utility), 6.: approximative variance prin-
ciple (left linearized quadratic utility)
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5ar1H,, Zero utility premium (Il)

1 2./3. /4
4a
8.
3a
2a ¢
a
u
0 _h
0 a 2a 3a 4a

Pareto and exponential risk distribution; truncated linear utility

Pareto distributions: 1.: limiting case a |1, 2.: a = 2, 3.: « = 3, 4.: limiting exponential distribution,
5.: net risk premium

8arH,, Zero utility premium (111) 4
1. 2., 3.
6a 1
4a
5.
2al /T
.--"" ------ H
0
0 0.5a a 15a 2a 25a 3a

Pareto and exponential risk distribution; quadratic utility

Pareto distributions: 1.: a =2, 2.: « = 3, 3.: « = 4, 4.: limiting exponential distribution, 5.: net risk
premium
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The appropriate variance principle approximation for this case is hence given by

-2 2
e———u2=u+0.264§—a, §20, 37)

H, ~u+
au S H 2ae

for small values of u, which shows that the above suggestion * is correct since the factor

=2 _ 0264... is between 0 and 1.

The preceding graphs which have been produced by use of the computer algebra system
MAPLE show plots of some of the zero utility premiums above. Note that for Exam-
ple 5, the left branch of the premium was plotted using the implicit plot command of
MAPLE, according to (34).

It is clearly seen from the plots above that the approximation with the variance principle
is, in general, not very good for larger values of u, in particular for “dangerous”
distributions such as the Pareto risk distribution. Note that in this case, for small values
of a, the quadratic zero utility premium increases extremely fast with p.
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Zusammenfassung
Zum Nullnutzen-Prinzip fiirr Skalenfamilien von Risikoverteilungen
Es wird gezeigt, daB in natiirlichen Skalenfamilien von Risikoverteilungen vereinfachte Berech-
nungs- und Vergleichsmoglichkeiten fiir die Nullnutzen-Pramien existieren, wenn die Nutzenfunk-
tionen eine Skaleninvarianzeigenschaft besitzen.
Summary
The zero utility principle for scale families of risk distributions

It is shown that in natural scale families of risk distributions simplified calculations and comparisons
of zero utility premiums are possible, if the class of utility functions considered is scale invariant.
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