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1. I n t r o d u c t i o n  

A premium calculation principle is a general rule that assigns a premium H to a given 
risk X. Intuitively, H is what the insurance carrier charges (apart  f rom an expense 
allowance) for taking over the risk X. As a policy of  premium calculation, the insurance 
carrier might base his decision on a utility function u, which is assumed to be a monoton-  
ically increasing, differentiable and concave function on R.  The principle requires that 
the utility u (0) before assuming responsibility for the claims be equal to the expected 
utility E [u (H - X)] after taking over such responsibility in exchange for the premium H. 
Mathematical ly X is a random variable, and H depends on X through its distribution 
function and the utility function, as well. In the case u (0) = 0 we obtain the zero utility 
principle given as 

E [u (H - X)] = 0. 

So far this principle has been mainly of  theoretical interest. I f  we take the utility function 
as exponential, then the zero utility principle equals the exponential principle and has an 
explicit solution. For twice differentiable non-exponential  utility functions we have, 
moreover,  the variance principle as a first approximation,  see Hei lmann (1987). Since this 
is the only approach known so far to deal with general utility functions, many  authors 
define a utility function as being twice differentiable, see Goovaer ts  and de Vylder (1979), 
Gerber  (1985), Reich (1986), Kremer  (1986) or Hei lmann and Schr6ter (1987). 
In this paper,  we show that  for certain classes of  not necessarily twice differentiable utility 
functions - which will be characterized as being scale invariant - and for certain classes 
of  risk distributions where the expectation plays the role of  the "na tura l"  parameter  we 
find explicit representations for the zero utility premium. Further,  comparisons with 
other premium calculation principles are given. 

2. S c a l e  i n v a r i a n t  u t i l i t y  f u n c t i o n s  

In this paper, we consider throughout  continuous utility functions u: 1~ --. R ,  differen- 
tiable at zero, with the following characteristic properties: 

u(0) = 0, u '(0) = I [normalization] (1) 

x < y ~ u (x) < u (y), x, y E ~, [monotonicity] (2) 

u ( t x + ( 1 - t ) y ) > t u ( x ) + ( 1 - t ) u ( y ) ,  x, y E I L  0 < t < l  [concavity] (3) 

Note that we do not assume that u should be twice differentiable. 
Clearly, the normalization condition says that a zero quantity x (e.g., an empty financial 
budget) has no utility, and that the absolute utility of  "small"  quantities x is almost 
identical with that quanti ty (i.e., u (x) ~ x). The concavity condition says that the relative 
increase of  the utility becomes smaller when the size x of  the quantity grows. 
Suppose that q / =  {Ua[ a > 0} is a given family of  utility functions fulfilling (1), (2) and 
(3) above. We say that ~//is scale invariant if there exists some function h: P,+ x ~,+ ---, R + 
with the property 

ua(/ax) = l*Uh~a,~l(X) for all a ,#  > 0, x 6 R ,  (4) 
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where F, + denotes the set of  all positive real numbers.  This notion of  scale invariance 
reflects the idea that  structural properties of  utility functions should not essentially 
depend on the scale in which the variable x is measured [e.g., if x represents a monetary  
quantity, there should not be basic differences whether the currency unit is D M  or US-$ 
or s 
The following Theorem given a characterization for such classes of  utility functions. 

Theorem 1. Let u be a utility function in the sense of  (1), (2) and (3), and g: P,+ ~ F, + 
be surjective. Then 

u (g (a) x) 
ua(x):= g(a) ' a > 0 ,  x e P ,  (5) 

defines a scale invariant class q / o f  utility functions. Conversely, if q / =  {u~ I a > 0} is a 
scale invariant class of  utility functions and h (a,-)  is surjective for at least one a > 0, then 
there exists some utility function u and a surjective function g such that  (5) holds for all 
a > 0 .  

Proof. Given (5), we see that for all a, # > 0, 

u (g (a) tt x) u (g (a') x) 
u~ (#x )=  - ~ - -  =/~ua,(x),  x e P ,  

g(a) g(a') 

where a' is any solution of  the equation g (a') = g (a) # [which exists by the surjectivity 
of  g]. Since a' depends in general on both a and #, it is clear that  h (a, ~) = a' defines a 
function h fulfilling (4), hence q,' is scale invariant. 
Conversely, suppose that  ca' is a scale invariant class of  utility functions. Fix a > 0 such 
that  h (a, .) is surjective. Then for all c > 0, 

hence 
u . ( cx )  = cuh~a.o~(x), x e R ,  

u. (c x) 
uh~.o~ (x) = - - ,  x ~ R .  

c 

By the surjectivity of  h (a,.) ,  there exists at least one c > 0 with h (a, c) = c', for every 
c' > 0. Choosing c appropriately we see that there exists a function g: P,§ --, P,+ such that  
c = g (c'), i.e. h (a, g (c')) = c' and hence 

u , ( g ( c ' ) x )  
uo,(x) = , x e R ,  

g (c ' )  

for all c ' r  +, which is (5). In particular, for the fixed a, we have 

ua (x) = ua (g (a) x) x e R .  
g (a) ' 

I t  remains to show that  g is surjective. But for every # > 0, we have, with a still being 
fixed, 

u~ (g (a)/~ x) u~ (g (c") x) 
u~(#x) = # g ( a ) #  -/~Uh~,~)(X) = /~Uh~,gtr = # g(c") ' x e P . ,  
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where c" = h (a,/~). It  follows that  

u~ (g (a) # x) u~ (g (c") x) 
-- x e N ,  

g (a) ~ g (c") ' 

g g ( a )  
hence, deno t ing  r - g (c") ' we obta in ,  pu t t ing  y = g (c")x, 

u~( ry)  = r u a ( y ) ,  y e N .  

It  follows that  u~ (r 2 y) = r u~ (r y) = r 2 u a (y), u~ (r 3 y) = r u a (r 2 y) = r 3 u~ (y), and  hence 
by induc t ion ,  

ua (r" y ) =  rnUa(y),  h e N ,  y e N .  

Similarly, 

or, in general,  

u a ( y ) = u . ( r " r - " y ) = r n u ~ ( r - n y ) ,  n e ~ q ,  y e N ,  

U a ( r " y ) = r " u . ( y ) ,  n e Z ,  y e N .  

Suppose  first that  r # 1. Let s,  = r" i f r  < 1 and  s. = r - "  i f r  > 1, for n e N .  Then  s. ~ 0 
for n ~ oo, hence 

u a (y) u .  (s. y) 
- l im - u ' a ( O ) = l ,  y # O ,  

y . ~  ~ s . y  
i.e. 

In  this case, 

u ~ ( y ) = y ,  y e N .  

ua (# Y) 
uh~a,o~ (Y) = = y,  y e N ,  

// 

for all p > 0, i ndependen t  o f  #, hence we are free to modi fy  h in such a way that  
h (a, #) = #, i.e. g (p) = # for all /~ > 0, which is surjective. 
In  case that  r = 1, we have g (c") = g (a)~,  and  since g (a)/~ ranges all over R § when  
does so, we see that  g is surjective, as requested. 
This  proves Theorem 1. []  

By re la t ion (5), we see that  in the case of  surjectivity of  g, we could likewise pu t  u a = vgta), 
so that  the re-parameter ized family ~ = {vc I c > 0} with 

u (c  x )  
v c ( x )  - , x e R  

c 

would  be an  equiva lent  representa t ion  of  the class qz, with the " n a t u r a l "  scale pa ramete r  
c > 0 .  

Example 1. The fol lowing classes qZ = {u a l a > 0} of  uti l i ty funct ions  are scale invar ian t :  

u (x/a) 
ua (x) : = min  {x, a} - - -  [ t runcated l inear  util i tyl (6) 

1/a 

with u (x )  = mi n  {x, 1} = u l  (x), x e R ,  g(a)  = 1/a 

u a (x) : = 1 [1 - e -  a x I _ u (a x) [exponent ia l  util i tyl (7) 
a a 
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with u(x) = 1 - e-"  = ul (x), x e R ,  g(a) = a 

, x < a u (x /a)  
Ua(X) := 2a = _ _  

~, x a 1/a 

with u(x) = u 1 (x), x~R,  g ( a ) =  1/a 

x, x < 0 linearized 
u~ (x) : = v (x ) ,  x > 0 

[left utility] 

with v (x) being an arbitrary utility function. 

[quadratic utility] (8) 

(9) 

Note that the utility functions of type (9) are differentiable, but not twice differentiable 
at zero in general. 
If we assume that ua e og [where ~ is scale invariant] is twice differentiable at zero and 
if we use the first three terms in the Taylor expansion of the generating utility function 
u in (5), we obtain 

u(x) ~ x + ~x 2 
2 

for values ofx  near zero, where 0 = u" (0) _< 0 by the concavity ofu. If further the random 
variable X denotes a risk with existing mean # and variance o 2, the zero utility premium 
H can approximately be calculated according to the solution of the equation [of. Heil- 
mann (1988), p. 154 q. 

o = E [u ( R  - X)]  ~ E [ ( n  - X)]  + 2 E [ (H - X)  ~1 = H - ~ + ~ [ (H - ~,)2 + ,,21, 

giving 

H ~ p -  Qa2 2 
l + x / 1 - 0 2 a  2 ~ g -  a2 

provided that 0 a < 1. The zero utility premium H a for the given class 6//can hence also 
be approximated by a variance premium, using the corresponding expansion 

ua (x) = u (g (a) x______) ~ x + g (a) 0 x 2 
g(a) 2 

for values of x near zero, giving 

. g(a) . .  
g ( ) ~ O a 2 ~ + g - - ~ t ~ l - # ) ,  a > O .  

3. S c a l e  f a m i l i e s  o f  r i sk  d i s t r i b u t i o n s  

In what follows we shall assume that the random variable X denotes a non-negative risk 
with existing means # > 0 and finite variance a 2. For a given distribution Q, let Q, denote 
the scaled distribution defined by 

Q.(A):= Q ( ~ A )  (10) 
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1 
for all # > 0 and Borel sets A ___ R ,  where - A  = {a /p laeA} .  We say that the risk 

distribution pX belongs to a scale family ~ of  distributions if there exists a fixed distri- 
bution Q such that ~ = {Q~[p > 0}. If, in particular, px__ Q,  and simultaneously 
E (X) = ~, # > 0, then ~ is also called a natural scale family of  distributions since in such 
a class, the expectation of  the risk plays the role of  the "na tura l"  parameter.  Note that  
i fX  is an arbitrary risk with distribution Q and the expectation E (X) = 1, then the scaled 
risks/~X, # > 0 belong to the natural  scale family ~ = {Q, Ip  > 0}, and the variances 
grow quadratically with #: Var (/~ X) =/~2 Var (X) = #2 a2,/~ > 0. 

Example 2. The following classes of  risk distributions form natural  scale families [in 
terms of densities f , , /~ > 0]: 

1 
f~ (x) = - e -  x/~, x > 0 [exponential distributions] (11) 

// 

f~(x) = - - e - ' X / ~ ,  x > 0 (e > O) [gamma distributions] 02)  

c ~ - I  1 
f~ (x) = /'1 x "~ '  x > 0 (~ > 1) [Pareto distributions] (13) 

\, / 
a p /  

1 
f,(x) - ,  2 / ~ x  e-~l"2t~/~ x > 0 [log-normal distributions] (14) 

Note that in general, if f is the density of a risk X with expectation E (X) = 1, then ~ f (~),  
x > 0 is the density of the scaled risk ~ X, with expectation #. 

4. Z e r o  u t i l i t y  p r e m i u m s  in  s c a l e  f a m i l i e s  

In this section we shall show that premium calculations based on the zero utility principle 
can be essentially simplified if scale invariance is given, and the risk distribution is a 
member  of  a natural  scale family of  distributions. In this case, the zero utility premium 
can be expressed in terms of  the net risk premium. 

Theorem 2. Suppose that q / =  {u a [a > 0} is a scale-invariant class of  utility functions 
according to (4), and that the distribution px of  the risk X belongs to a natural  scale 
family ~.  Suppose further that for all a > 0, the premium Ha.~ is the unique solution of 
the equation 

E [u a (Ha, 1 - X)] = 0 

for a risk X with E ( X ) =  1. Then the zero utility premium Ha, ~ for the scaled risk 
Y = g X is in general also uniquely determined, and is given by 

Ha,~t = # Hh(a,o),l, a,/~ > 0. 

Proof. Let X be a risk with E ( X ) = I  and Y = # X ,  # > 0 .  Then the premium 
H ' =  Hh~a.,),l is, by assumption, uniquely determined by the equation 

E [Uh(a,~)(H -- X)] = 0, 
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hence 
0 =/.t" 0 = / / E  [uh(a,~) (H -- X)] = E Luuh(a.~)(H - X)] 

= E [u a (/~. (H - X))] = E [u, (/~ n - Y)], 

which implies that  # H =/z  Hh (a, la), 1 is a zero utility premium for Y. Suppose now that/~ H'  
is another  zero utility premium for Y. Then a correspond backwards calculation shows 
that  

E [Uh(.,~l (H'  - X)] = 0, a > 0,  

and hence H '  = H by the uniqueness of  H. 
This proves Theorem 2. [ ]  

Theorem 2 says that  for the general premium calculation, it suffices to calculate the 
premiums for risks with unit expectation solely, f rom which the general solution is 
obtained essentially via the mapping  h which is a kind of  inverse for the structural 
function g of  the class of  utility functions. 
The following result is concerned with the "converse" question, i.e. whether the general 
premium can be calculated f rom the general risk, with a particular choice of  the utility 
shape parameter  a. 

Theorem 3. Suppose that q / =  {u a l a > 0} is a scale-invariant class of  utility functions 
according to (4), and that the distribution px of  the risk X belongs to a natural  scale 
family ~.  Suppose further that the map  h (a, .) is surjective for at least one a = a o > 0, 
say, and the zero utility premium H,o,~ is uniquely determined by the equation 

E [U~o (Hao, v - X)] = 0 

and all risks X with E (X) --/~ > O. Then the premium H~,,1 is in general also uniquely 
determined, and is given by 

Ha,,1 g(ao) a' - g(a ' )  Ha~176 > 0 ,  

where g is as in (5). 

Proof. By Theorem 1, we can assume that  the utility functions u a possess a representation 
according to relation (5). Fix a o > 0 such that Hao,~ is uniquely determined by the 
relation E [Uao (Hao.~ - X)] = 0 for all risks X with E (X) =/~ > 0. I f  we put, in particular, 
# :  = g (a')/g (ao) for arbi trary a' > 0 and Y : = X//•, then Y is a risk whose distribution 
belongs to the same scale family ~,  with E (Y) = 1, and 

[u( Ig a~ 
E g(a') [ g  (a') o,~ J J l  = E [u (g (ao) (Hao,~ - X))] = 0 

which implies that  

Ha' 1 g (a~ H g (a~ H , ~ - -  g ~  ao ,g(a ' ) /g (ao) ,  g(a ' )  ,o., 

as requested. The uniqueness of  Ha, 1 now follows from the uniqueness of  Hao.,. [ ]  
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If we apply Theorems 2 and 3 in the special case of g (a) = 1/a [examples (6) and (8)] or 
g (a) = a, a > 0, respectively [example (7)], we obtain 

a '  

H a , , = - - H a ,  a,/a,, a , a ' , /~>0  if g ( a ) = l / a , a > 0 ,  (15) 
a 

a 
Ha,,,=~THa,a,,/a, a , a ' , /~>0  i f g ( a ) = a , a > 0 .  (16) 

In particular, zero utility premiums can in these cases easily be obtained from the 
premiums H~. c for c > 0, which might be an alternative to the procedure in Theorem 2: 

H . , o=aHI , , / a ,  a , /~>0  if g ( a ) = l / a , a > 0 ,  (17) 

1 
H a , , = - H x , a , ,  a , /~>0  i f g ( a ) = a , a > 0 ,  (18) 

a 

which means that in these cases, the graphs of Ha. , differ only in a simultaneous 
proportional rescaling of the two plot axes, for different values of a > 0. 

5. N u m e r i c a l  E x a m p l e s  

In this section, we shall present some numerical evaluations of zero utility premiums for 
the utility classes given by (6), (8) and (9), for risk distributions of exponential- and 
Pareto type [relations (11) and (13)]. 

Example 3. [Linear truncated utility] 

Recall that the utility functions are of the form u a (x)=  min {x, a} here; x CR, a > 0. 

i) Suppose the risk distribution is exponential with unit expectation (cf. (11)). Then we 
have, for H ~ ~ ,  

~'a - -  e - ( r l - a ) ,  H > a 
E [H a (H - X)] = ( H  - 1, H < a, (19) 

from which it follows that 

a - l n a ,  a < l  
Ha, l=  1, a > l  (20) 

and hence, by Theorem 2 or relation (15), 

{: H a , . = , U . H a / . , l =  + / z l n  , #_>a .  (21) 

Note that here the zero utility premium is linear for small values of/~, i.e. the zero 
utility premium coincides with the net risk premium here, and that u" (0) = 0 so that 
a formal application of the variance principle approximation would likewise yield 
Ha,. -~/~. 
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ii) Suppose the risk distribution is of Pareto type with unit expectation (cf. (13)), with 
shape parameter ct > 1. Then we have, for H �9 IR, 

t (1 H~- a ) - ' ,  E [ u ~ ( H - X ) ] =  a -  + H > a  

I . H -  1, H < a ,  
(22) 

from which it follows that 

- ~ +  , a < l  
H.,I = (23) 

, a > l  

and hence, by Theorem 2 or relation (15), 

= " # ( 2 4 )  H~,~=p.  Ha/~ , l  - ~ # + a p  , p_>a. 

Note that in this case, for �9 ~ ~ ,  the Pareto distribution converges weakly to the 
exponential distribution; likewise converges the zero utility premium of the Pareto 
distribution to that of the exponential distribution. 

Example 4. [Quadratic utility] 

Recall that the utility functions are of the form u. (x) = a x 

i) 

x < a  
here; x e R ,  a>0.  

x > a  

Suppose again that the risk distribution is exponential with unit expectation ( c f .  ( 1 1 ) ) .  

Then we have, for H �9 R, after some elaborate calculus, 

E [U a (H -- X)] = 

a _ 2 e-ill-a) 
- - - -  2 - a - - -  H _ a  

l ( a  - 1) - (H - (a + 1)) 2 
(25) 

~, ~a  , H < a ,  

from which it follows that 
{~ (a2)  

- In 
H . , I =  2 - '  

+1 - x / ~ -  1, 

and hence, by Theorem 2 or relation (15), 

+.ln?"q 

a > l  
(26) 

0 <__ ~ _< a/x /~  

# -  a/x/~. 
(27) 

],/2 
Note that the variance principle approximation would yield Ha, ~ ~ p + ~ -  for small 

1 z a  
values of # here since Q = u" (0) = - - 

a 
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(ii) Suppose again that the risk distribution is of Pareto type with unit expectation (cf. 
(13)), with shape parameter ~ > 1. Then we have, for HeR,  

( a i ~  2~x // H-a"~ -(=-1) t,' 
- - - - - 2 - a ~ - - - - '  H > a  

E [ u . ( H - X ) ] :  : + ] ) - ( H - ( a + l ) ) 2 ,  H < a ,  

2a 
from which it follows that 

Ha.l= V 2o~ 

/a2 g + 1 
a+l  - I /  ~ - 1 '  

a < ~ /  2~ 
- -  0 c - - 1  

~_2~ 
a>  --1 

(28) 

(29) 

and hence, by Theorem 2 or relation (15), 

I a + # - - / a 2  c t+ l#  2 0<p_< a ? ~ 7 ~  

~x 1 ' (30) 
H~ ~ H./~,~ ( a - c ~ + ~  --(~_l)a 2, u_>a ~-~ 

Again we see that for ct --, oo, the zero utility premium from the Pareto distribution 
converges to the zero utility premium for the exponential distribution. 

Example 5. [Left linearized quadratic utility] (x,  x2 x < 0 

Recall that the utility functions are of the form ua (x) = t~ - 2a '  0 _< x < a here; 
~, x_>a 

x e R, a > O. In particular, u a is not twice differentiable at the origin. 
Suppose again that the risk distribution is exponential with unit expectation (cf. (11)). 
Then we have, for H ~ P~, similarly as before, 

f 
a + 2 e-Ha- 2 e-Ca-a), 
. . . . . . .  H_>a 

E [ u a ( H - X ) ] = (  2 e - H + ( H - l ) ( 2 a - ( H - 1 ) ) - 1 2 a  , H<a._ 
(31) 

This equation can explicitly be solved only for H > a, giving 

( 2 ( e ~ _ _  --  1)]  a < ao = Ha, 1 = In \ a2 / . . . .  1.1760. (32) 
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and hence, by Theorem 2 or relation (15), 

Ha, = # . H = / . , I =  #ln(2/~ 2 ( e ' / " - l ) )  a a2 , # > - - .  (33) 
ao 

The left branch of the general zero utility premium is the solution of the equation 

a 
2#2e -n/" + (H - #)(2a - (H -/~)) - #2, for # < - - .  (34) 

ao 

Note that no variance principle approximation in the usual sense is possible here since 

u"(0) does not exist. However, u'~, (0)= __1 [right second derivative], u"_ (0)= 0 [left 
a #2 

second derivative ], which implies that Ha., should lie between # and # + 2a  for small 

values of# *) (see (37)). However, if we formally replace H by # + c/2 2 in (34) for p > 0 and 
divide by #2, we obtain the equation 

2 
- e  -c" + 2ac  - c 2 #  2 - 1 ~- 0 .  (35) 
e 

Considering the limit for # ~ 0 in (35), we see that c must take the value 

e - 2  
c - (36) 

2ae  

4== 

3 a  

2 a  

a 

0 
0 

H,,/~ Zero uti l i ty premium (I) 2. s. 

0 .5a  a 1 .5a 2 a  

Exponential risk distribution 

1.: truncated linear utility, 2.: quadratic utility, 3.: left linearized quadratic utility, 4.: net risk 
premium, 5.: approximative variance principle (quadratic utility), 6.: approximative variance prin- 

ciple (left linearized quadratic utility) 

720 



5 a  

4 a  

3 a  

2 a  

�9 ~ ~ 
,,'4. 

a 2 a  3 a  4 a  

Pareto  and  exponent ia l  risk dis t r ibut ion;  t runca ted  l inear  utility 

Pare to  dis t r ibut ions:  1.: l imiting case ~ J,1, 2.: ~ = 2, 3.: �9 = 3, 4.: l imiting exponent ia l  d is t r ibut ion,  
5.: net  risk p remium 

8 a H=,~ 

6 a  

Zero utility premium (111) 4. ,, 

r ~ 

/ 
4 a / ,."/'" 

0 0 . 5 a  a 1 . 5 a  2 a  2 . 5 a  3 a  

Pare to  and  exponent ia l  risk dis t r ibut ion;  quadra t i c  utility 

Pare to  dis t r ibut ions:  1.: ~t = 2, 2.: ct = 3, 3." ~t = 4, 4.: l imiting exponent ia l  d is t r ibut ion,  5.: net  risk 
p remium 
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The appropriate variance principle approximation for this case is hence given by 

e - 2  2 /~2 
Ha.,,~#+-~-e-ae/~ = # + 0 . 2 6 4 ~ a ,  # > 0 ,  (37) 

for small values of #, which shows that the above suggestion *~ is correct since the factor 
e - 2  

- 0.264... is between 0 and 1. 
e 

The preceding graphs which have been produced by use of the computer algebra system 
MAPLE show plots of some of the zero utility premiums above. Note that for Exam- 
ple 5, the left branch of  the premium was plotted using the implicit plot command of  
MAPLE, according to (34). 
It is clearly seen from the plots above that the approximation with the variance principle 
is, in general, not very good for larger values of/~, in particular for "dangerous" 
distributions such as the Pareto risk distribution. Note that in this case, for small values 
of ct, the quadratic zero utility premium increases extremely fast with #. 
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Zusammenfassung 

Zum Nullnutzen-Prinzip fiir Skalenfamilien von Risikoverteilungen 

Es wird gezeigt, dab in natiirlichen Skalenfamilien von Risikoverteilungen vereinfachte Berech- 
nungs- und Vergleichsm6glichkeiten fiir die Nullnutzen-Pr/imien existieren, wenn die Nutzenfunk- 
tionen eine Skaleninvarianzeigenschaft besitzen. 

Summary 

The zero utility principle for scale families of risk distributions 

It is shown that in natural scale families of risk distributions simplified calculations and comparisons 
of zero utility premiums are possible, if the class of utility functions considered is scale invariant. 
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