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Abstract: Motivated by a simple probabilistic model for the radioactive decay, we show that 
Serfling's [1978] approach to Poisson approximation using coupling techniques can in a natural 
way also be applied to Poisson process approximation. This provides at the same time uniform 
estimations for the deviation of a Markov-Bernoulli process from the approximating Poisson 
process with respect to the total variation distance. An application to quasirandom input 
queuing models is also given. 
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1 A Probabilistic Model of Radioactive Decay 

In a famous experiment Geiger and Rutherford came to the conclusion that the 
number of particles emitted from a radioactive source within a short time period 
should approximately follow a Poisson distribution, the number of particles observed 
in non-overlapping time intervals being independent of each other. In the setting of 
stochastic processes, this means that the number of particles counted up to time 
t> ° approximately follows a Poisson process with constant intensity A> 0, say. Of 
course, this model cannot be appropriate for large values of t since after some finite 
time, the source will be exhausted which means that no further particles are obser­
vable. 

Alternatively, due to the lack of memory property of radioactive decay, we might 
assume that actually a multiple of the empirical distribution function of an exponen­
tially distributed population with mean 1/ J1 > ° is observed, which is a sum of inde­
pendent Markov-Bernoulli processes with states {a, I} and exponential jump time 
distribution. To be more precise, assume that the source consists of N atoms of the 
same type, acting independently of each other. Let Ti' i = 1, 2, ... ,N denote the 

1 D. Pfeifer, Institut fUr Statistik und Wirtschaftsmathematik, RWTH Aachen, Wtillnerstr. 3, 
D-5100 Aachen. 

0340-9422/85/050217-228$2.50 © 1985 Physica - Verlag, Heidelberg 



218 D. Pfeifer 

time of decay of atom i. Then N; (t) = I (T; ~ t), t ~ 0 represents the Markov­

Bernoulli decay process for atom i, where I (.) denotes the indicator random variable 
N 

for the corresponding event. Let N (t) = ~ N. (t), t ~ O. Then N (t), t ~ 0 represents 
;= 1 1 

the decay process for the whole source, and 

P(N; (t) = 1) =P(T; ~ t) = 1-e-P.t (1) 

P(N(t)=n)=(~)(e~t - I)n e-~tN, t;;'O,n = \,2, ... ,N. (2) 

Now assume that J.1t is small. Then N; (t) is close to a Poisson random variable with 

mean -log (e-P.t) = J.1t according toSerfling [1975,1978; cf. also Deheuvels/Pfeifer] 
which means that N (t) is approximately Poisson distributed with mean J.1tN. But in 
fact, much more can be said here; namely, it is possible to show that using Sertling's 
approach of coupling techniques, N (t) can be approximated by a Poisson process 
M (t) with parameter A = J.J.N uniformly in a small neighbourhood of the origin, provi­
ding thus a logical explanation of Geiger's and Rutherford's results. This also becomes 
apparent from the fact thatN (t) = liN N (t), t> 0 is just the empirical distribution 
function of an exponentially distributed population with mean E (N (t» = 1 - e-p.t 
and variance Var (N (t» ~ liN (which explains for the almost "detenninistic" exponen­
tiallaw of radioactive decay since in practice N is of order 6 • 1023 atoms per mole), 

while E (M (t» = J.1t '" 1 - e-p.t = E (N (t)) for small values of t. Here similarly, 
$I (t) = liN M (t), t ~ O. From a practical point of view, it would thus be desirable 
to have some estimations for the distance between the Markov-Bernoulli decay process 
and the approximating Poisson process avalaible. A suitable distance measure here is 
the toal variation distance given in terms of non-negative integer-valued random varia­
bles X and Y by 

1 -d(X, Y)= sup {IP(XEA)-P(YEA) 1}=-2 ~ IP(X=k)-P(X=k) I. 
+ k=Q 

A ~z (3) 

It will be shown in the sequel that in our case, 

(4) 

To give an example, consider a source consisting of one gram of the uranium isotope 
U238 which posseses a half-life of about 4.5 • 109 years [cf. Wichmann. chapter 7]. 
Then (4) indicates that with a maximum error ofless than 10-3 a Poisson process 
approximation is justified within a time span of more than two days! (A further 
discussion on the probabilistic model of radioactive decay described above can be 
found in Weise). 

Of course, similar considerations are possible when radioactive sources with dif­
ferent portions of different isotopes (implying varying half-lifes) are involved. For 
instance, if the source consists of Nl atoms with exponentially distributed life lengths 
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with mean Ifill andN2 atoms with exponentially distributed life lengths with mean 
If1l2' andNl (t) andN? (t), t ~ 0 represent the individual Markov-Bernoulli decay 
processes, i = 1, 2, ... ~ NI ,j = 1, 2, ... ,N2 , then the decay process for the whole 
source, N I N 2 

N (t) = ~ N/ (t) + ~ N,? (t), t ~ 0, can similarly be approximated by a 
i= 1 j= 1 

Poisson processM (t), t ~ 0 which now has intensity A = III NI + 112 N2 [see e.g. 
(:inlar]. Then similarly to (4), we have an estimation of the form 

d(N(t),M(t))~ 1-(1 +Illtfl e-JJ.ltNI (1 +1l2 t)N2 e-JJ.2 tN2 
(5) 

NI 2 N2 2 
~ 2 (Ill t) + 2 (Il2 t) ,t ~ o. 

Extensions to more than two isotopes involved are obvious from this; see also the 
Theorem below. 

2 The Coupling Techniques 

We shall give a short account on couplings first. Let X and Y be arbitrary random 
variables with values in a real measurable space (R, B), and define analogously to (3) 
the (general) total variation distance d by 

d(X, Y)=sup {IP(XEA)-P(YEA) I}. 
aEB 

(6) 

Due to a well-known inequality of Doeblin [see Serjling, 1975, 1978] we always have 

d (X, Y) ~P (X =1= y); (7) 

if X and Yare additionally constructed in such a way that equality holds in(7), then 
(X, Y) is called a (maximal) coupling. Although Strassen has shown that it is always 
possible to construct a maximal coupling, the problem remains to find an easy way to 
do so in concrete cases. For Poisson process approximation we can proceed as follows. 

Lemma 1 

Let T denote the time of the first jump in a Poisson process M (t), t ~ 0 with 
intensity A> 0, and define 

N(t) =I(T~ t), t ~ o. (8) 

Then N (t) is a Markov-Bernoulli process, and (N (t),M (t)) is a maximal coupling for 
all t ~ o. 
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Proof 

Obviously, N (t) forms a Markov process with states {O, I} andP(N(t) = 1) = 
= P (T ~ t) = 1 - e-At . Further, we have 

P(N(t) *M(t» =P(M(t) ~ 2) = 1 - (1 + At) e-At
, t ~ 0 (9) 

which coincides with d (N (t), M (t) by Lemma 4.1 in Serj1ing [1978]. This gives the 
desired result. 

Lemma 1 essentially says that in a maximal coupling, the Markov-Bernoulli process 
is a truncated Poisson process, both processes cOinciding for t < T2 where T2 is the 
time of the second jump of the Poisson process. Choosing t = 1 we see that N (1) is a 
binomial random variable with mean p = 1 - e -A while M (1) is a Poisson random 
variable with mean A = -log (1 - p). This explains why a Poisson distribution with 
mean A = -log (1 - p) is closer to a binomial with mean p than a Poisson with mean 
p; [see Serj1ing, 1978; or Deheuvels/Pfeifer]. 

Theorem 

Let {Ni (t); t~ O}, i = 1,2, ... ,Nbe independent Markov-Bernoulli processes 
with exponentially distributed jump times with mean 1/J1;, and {M (t); t ~ O} a Poisson 

N 
process with intensity A = ~ J1 .. Then 

;= 1 I 

Proof 

Since the total variation distance only depends on the distribution of the random 
variables involved, we may assume that {Mi (t); t ~ O}, i = 1, i, ... ,N are Poisson 

processes which are maximally coupled withNi (t), t ~ 0 each according to Lemma 1. 
N 

Then M (t) = ~ M. (t), t ~ 0 is a superposition of Poisson processes with intensities 
i=1 I N 

J1. each, giving again a Poisson process with intensity A = ~ J1 .. The estimation (10) 
I i= 1 I 

now follows from Deheuvels/Pfeifer. 
It would be interesting to see whether estimation (10) is sharp in some sense. In 

fact, by Theorem 1.1 in Deheuvels/Pfeifer, and the arguments used above, it follows 
that 

N 1 N N 
d (i~1 Ni (t), M (t» ~ 2" i~1 (J1i t)2 exp (- i~1 J1i t) (11) 

N 
as long as t ~ {~ J1i} -1 which means that for small values of t, estimation (10) can­

i= 1 

not essentially be improved. 
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Finally, it should be pointed out that by Poisson process approximation, a maximal 
coupling can also easily be constructed starting with the Markov-Bernoulli process 
rather than the Poisson process itself. For this purpose, let {En; n EN} be a sequence 
of Li.d. exponentially distributed random variables with mean I/A > 0, independent 
from a two-state Markov Bernoulli process with exponentially distributed jump time T 
with mean I/A. Define 

T1 = T, Tn+1 = Tn + En' n ~ 1. (12) 

Then {Tn; n EN} is the arrival time sequence of a Poisson process M (t), t ~ 0, say, 

with intensity A, which is maximally coupled with the given Markov-Bernoulli process 
N (t) = / (T ~ t), t ~ 0. This follows from the fact that by our construction,N (t) is 
just the truncation of M (t), t ~ ° according to Lemma I. 

The last remarks also allow for a similar approach to simple Poisson approxima­
tion, i.e. a construction of a maximal coupling for a single {O, l}-valued Bernoulli 
random variable X with mean p E (0, I), say. We only have to use an appropriate 
imbedding technique as follows. Let A = - log (I - p) and again {En; n EN} be an 
i.i.d. sequence of exponentially distributed random variables with mean I/A. Define 
(frac = fractional part) 

T1 =(1 +Ed/(X=O)+frac(Ed/(X= I), 

Tn+1 = Tn + En+1, n ~ 1. 

If N (t), t ~ ° denotes the Markov-Bernoulli process with jump time T1 and 
M (t), t ~ ° the Poisson process with arrival-time sequence {Tn; n EN}, then 

according to what has been said above, N (t) and M (t) are maximally coupled 
for each t; but also, X = N (1), hence (X, M (1)) is the desired maximal coupling. 
We only have to prove that T1 in fact follows an exponential distribution, which 
is obvious since for x ~ 0, 

P(T1 >x)=(1-p)P(1 +E1 >x)+pP(frac(Ed>x) 

(13) 

-AX -A 
=e-A{e-A(x-1)/(x>I)+/(x~1)}+(1-e-A)e -e /(x~l) 

I-e-A 

= e-AX • 

3 Applications to Quasirandom Input Queuing Models 

In many birth-death queuing models it is assumed that requests for service occur 
according to a Poisson process with intensity A, say; this case is then also referred to 
as completely random input [cf. Ch. 3, Sec. 3-7, to 3-12. in Cooper]. On the other 
hand, it is some times more realistic to think of a system in which the requests for 
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service are generated by a finite number of sources. In such a system the probability 
of an arrival in a small time interval (t, t + h) will not be independent of the system 
state at time t, but will depend on the number of sources idle at time t. For instance, 
if we consider a finite-source system with an equal number of sources and servers, 
then no new requests can occur as long as all the servers are occupied, since there 
are no idle sources to generate new requests. The probability of blocking hence is 
zero, whereas the portion of time all servers are busy can take any value between 
zero and one. Such a kind of finite-source input is often called quasirandom input; 
to be more precise, it is assumed that the probability for any particular source to g 
generate a request for service in a small time interval (t, t + h) is J!h + 0 (h) for 
h ~ 0 if the source is idle at time t, and zero if the source is not idle at time t, inde­
pendently of the states of any other sources. From this it follows that, if a particular 
source is idle at time t, the distribution of time from t until the source next generates 
a request for service is exponential with mean IIJ!. Equivalently, the arrival process 
is just a Markov-Bernoulli process of the form (1) and (2) as is the radioactive decay 
process which thus represents a special case of a quasirandom input queuing model. 
By the Theorem, above we now see that for a short time period, such a quasirandom 
input model can be approximated by a completely random input model, allowing 
at the same time for an estimation of the "distance" between both models (in a 
probabilistic sense). Consider, as an example, a job shop consisting of N machines 
and a single repairman, and suppose that the amount of time a machine runs before 
breaking down is exponentially distributed with rate J! and the amount of time it takes 
the repairman to fix any broken machine is exponential with rate T [This is Example 
5.5 (b) in Ross]. Then we have a quasirandom input birthdeath model with birth and 
death intensities J!n and Tn' respectively, given by 

~n = {~-n)~ n<-.N 

n>N 
(15) 

T = T n n ;?; 1. 

F or all small time period, the repair system hence behaves approximately like a MIMI 1 
queue, since by the Theorem, the arrival process is close to a Poisson process with 
rateNJ!. 
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