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ON A RELATIONSIDP BETWEEN RECORD V ALUES AND ROSS'S 
MODEL OF ALGORITHM EFFICIENCY 

DIETMAR PFEIFER, * Technical University Aachen 

Recently Ross «(1981), (1983), Chapter 4.6) has developed a simple Markov chain 
model for an average-case analysis of the simplex algorithm in linear programming. 
Characteristically, this algorithm moves through the extreme points of the feasible 
region in such a way that only those points are successively considered which improve 
the actual value of the gain function (see e.g. Hadley (1962)). If we assume the N (say) 
extreme points to be arranged in such a way that the first point gives the largest and the 
Nth point the smallest value of the gain function, then the steps of the algorithm can 
appropriately be described by a finite Markov chain Sb···' SN with state space 
{1, ... , N} such that 

. 1 
1~k~N and P(Sn+1=kISn=I)=-.-, 

1-1 
1~k<i~N 

with 1 being an absorbing state. For this model Ross (1981), (1983) has shown that if 
TN denotes the number of steps required to reach state 1 for the first time then TN is 
approximately (for large N) Poisson distributed over N with mean log N. Here we shall 
demonstrate that this result can also be obtained by record value theory. In fact, if 
{Xn ; n EN} is an i.i.d. sequence of random variables following a uniform distribution 
over {1, ... ,N}, then {Sn; 1 ~ n ~ N} is identically distributed with the lower record 
value sequence {XUn ; 1 ~ n ~ N} where 

(2) 
_ {min {k; Xk <XuJ if Xun > 1, 

Un + 1 -

Un> otherwise. 

This follows readily by arguments as in Shorrock (1972). Especially, TN is identically 
distributed with T = min {n; Xu = 1}. 

Unfortunately, distribution theory for records from discrete distributions is rather 
cumbersome; however, to obtain the asymptotic results as indicated, we can use a 
continuous approximation in the following way. Obviously, nothing is seriously changed 
if we assume the random variables {Xn ; n EN} to be uniformly distributed over 
{1/N,···,(N-1)/N,1} except that now T=min{n;Xun =l/N}=min{n;Xun <2/N}. 
But for large N, we may approximately assume the Xn's to be uniformly distributed 
over the unit interval; then T is close to the stopping time T* = min {n; XU

n 
< 2/ N} 

where now {Un; n EN} is the associated record time sequence. But as is known from 
record value theory (see Shorrock (1972)), {-log Xu

n
; n EN} forms the arrival time 

sequence of a unit-rate Poisson process implying that T* follows exactly a Poisson 
distribution with mean log N + 1 - log 2 = log N. This gives the desired result. Moreover, 
the above arguments suggest that for the original Markov chain {Sl, ... , SN} and large 
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N{-log Sn/N; 1 ~ n ~N} behaves approximately as the first N arrival times Z1> ... ,ZN 
of a unit rate Poisson process, or equivalently, 

(3) Sn =int (N exp (-Zn)) + 1, 1 ~ n ~N. 
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