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AN AVERAGE-CASE ANALYSIS FOR A CONTINUOUS 
RANDOM SEARCH ALGORITHM 

DIETMAR PFEIFER, * Technical University Aachen 

Abstract 

We give an upper bound for the average complexity (i.e. the 
expected number of steps until termination) for a continuous random 
search algorithm using results from renewal theory. It is thus possible 
to show that for a predefined accuracy £, the average complexity of 
the algorithm is 0 (-log £) for £ ~ ° which is optimal up to a 
constant factor. 
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1. Introduction 

In recent years, attempts have been made to develop appropriate probabilistic tools 
and models for a unified treatment of an average-case analysis for certain classes of 
algorithms such as combinatorial algorithms (Barth (1983)) or searching algorithms 
covering for instance the famous simplex algorithm of linear programming (Ross (1983), 
Chapter 4.6) and others. The main tool there is the theory of finite-state Markov chains. 
This approach, however, is no longer applicable if continuous algorithms are considered, 
i.e. algorithms involving uncountable state spaces. In the present paper we want to show 
that a renewal-theoretic approach can be useful in such cases. For this purpose, we 
consider a random search algorithm which is shown to be asymptotically optimal up to a 
constant factor, i.e. the average complexity is of the same order as that of the best 
possible deterministic (i.e. binary) searching algorithm. For the sake of simplicity, the 
algorithm will be formulated only for the special case that the root of a monotonically 
increasing continuous function h on the unit interval with h(O) < ° < h(1) has to be 
approximated. All other possible applications including the determination of extrema of 
suitable convex or concave functions or more generally, the approximation of a 
(random) point in the unit interval with the possibility of exclusion of 'bad' solutions (as 
is typical in the above examples) can easily be derived from this. 

2. The algorithm 

We shall recursively construct random intervals [Um Vnh; [0,1] with Un ~ Vn and 
[Un+b Vn+l]~[Um V n], nEt\! such that h(Un)~O~h(Vn)' and n:~l[Um Vn]=x* a.s. 
where x* denotes the (unique) root of h in [0, 1]. 
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To start with, let [Uo, Va] = [0, 1], and {Yn ; n EN} be an i.i.d. sequence of uniformly 
distributed random variables on (0, 1) which are especially easy to generate by computer 
methods. 0 < e < 1 will denote the required accuracy of calculation. 

Continuous random search algorithm 

(a) If h(Un) < 0 < h(Vn ) and Dn = Vn - Un> e, let 

U ={Um ifh(Un+DnY n+ 1»0 
n+1 

Un + Dn Yn + 10 otherwise 

Vn + 1 = . {
Vm if h(Un +Dn Y n + 1)<0 

Un + Dn Yn+ 1 , otherwIse; 

then go to (a) with n being replaced by n + 1. Otherwise, 
(b) terminate. 

As can be seen from the above construction, either Un or Vn is changed within a 
single step of the algorithm, depending on whether the conditionally uniformly (over 
[Um VnD distributed random variable Un + DnYn+ b given (Um V n), leads to a non­
positive or non-negative value under h. Clearly, {(Um V n ); n EN} represents a two­
dimensional Markov chain with uncountable state space, having the following con­
vergence property. 

Theorem 1. With probability 1, h(Un)<O<h(Vn ) for all nEN, and 

(1) n [Um V n ] = x*. 
n=1 

Proof. The first part is obvious from the continuity of the distributions involved. For 
the second part, note that by induction, 

n 

(2) Dn ~ n Zk with Zk = max (Yb 1 - Yk ) 

k=1 

which is uniformly distributed over G, 1]. Alternatively, for Wk = 2(1- Zk), which 
provides an i.i.d. uniformly distributed sequence over [0, 1], we have 

(3) Dn ~ [II (1-~Wk)~ Dl exp (-~Wk) = exp ( -~ ktl W k), 

hence Dn ~ 0 a.s. (n ~ (0) which is equivalent to (1). 

Note that (2) provides an upper bound for E(Dn) given by (3/4)" while a direct 
calculation via the conditional distribution shows that 

(4) E(Dn+ 1 ) = ~E(Dn) + E((X* - U;~Vn - x*)) ~ iE(Dn) 

for n EN, giving a lower bound of (1/2)" for E (Dn). With respect to the average-case 
behaviour of the algorithm, the random variable of interest will be the stopping time 

(5) T = inf {n ; Dn ~ e }, 

gIvmg the almost surely necessary number of steps until termination. Here, the 
right-hand side of (3) suggests that an application of renewal theory as in Russell (1983) 
or Jensen (1984) could give the desired result. In fact, we have the following theorem. 
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Theorem 2. With probability 1, T < 00, and 

(6) 

Proof. We have 

(7) 

E(T) < -4 log £ + 1. 

T;§;inf{n; f Wk~-210g£}=T*, 
k=J 

say, which is almost surely finite with 

(8) E(T*)< -410g £ + 1 

and 

(9) E(T*) = -4 log £ +~+ 0(1) (£ ~ 0) 

(see Russell (1983) and Jensen (1984)). 
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It is possible to show by information-theoretic arguments that, under the above 
conditions, a lower bound for the average complexity of any deterministic searching 
algorithm based on comparisons is roughly -log £/log 2 = -1.44 log £ (see Knuth 
(1973), Chapter 6, p. 410), which can be achieved by a binary search algorithm with the 
unit interval being subdivided into interyals of length roughly £, or by a modified 
continuous binary search algorithm with consecutive bisection of the remaining intervals 
(similar to the above algorithm) until the predefined accuracy £ is obtained. This shows 
that the algorithm under consideration is asymptotically optimal up to a constant factor 
with an average complexity of O(-log £). 

3. Concluding remarks 

From a probabilistic point of view, the above result implies that an appropriate 
'guessing' strategy (due to the subdivision of consecutive intervals according to a 
uniform distribution) can be an (almost) optimal searching technique. We conjecture 
that a corresponding result also holds for a larger class of searching algorithms, 
including those mentioned in the introduction. 

Acknowledgements 

The author is grateful to the referee for his useful comments which led to an 
improved presentation of the results. 

References 

BARTII, G. (1983) Analyzing algorithms by Markov chains. In 7th Symposium on Operations 
Research, St. Gallen, Switzerland, 19-21 August 1982. Methods of Operations Research 45, 
405-418. 

JENSEN, U. (1984) Some remarks on the renewal function of the uniform distribution. Adv. 
Appl. Prob. 16, 214-215. 

KNUTH, D. E. (1973) The Art of Computer Programming, Vol. 3: Sorting and Searching. 
Addison-Wesley, Reading, Mass. 

Ross, S. M. (1983) Stochastic Processes. Wiley, New York. 
RUSSELL, K. G. (1983) On the number of uniform random variables that must be added to 

exceed a given level. 1. Appl. Prob. 20, 172-177. 


	Scan0001
	Scan0002
	Scan0003

