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In the theory of strongly continuous semigroups of bounded linear 

operators {T(t.) ! t .:::.- O} on a Banach space PI many representation 

theorems of the form 

(1) T(~)f lim 1jI~(T(;))f 
n~ 

n 
(2) T(~)f lim 1jI~(nR(n))f 

n~ 

(3) T(~)f lim 
n 1 

(~ f ePI) 1jI~(I +~A)f .:::.- 0, 
n~ 

have been established by several authors ([2J, [3], [5J, [7J, [S], 
[9] ), where IjI ~ is a sui table function analytic in some interval 

00 -At [o,oJ with 0 > 1, R(A) = J e T(t)dt for sufficiently large A de-o 
notes the resolvent of the semigroup, I denotes the identity operator 

and A denotes the corresponding infinitesimal generator. (Note that 

(3) is only meaningful if A is bounded.) The common background all 

of these representation theorems is probabilistic in that 1jI~ is the 

generating function of a non-negative integer-valued random variable 

N (see [4J for definitions) with expec'tation E (N) = ~ ([3], [71, [SJ); 
in fact, relations (1), (2) and (3) are in some sense a consequence 

of the famous law of large numbers in probability theory. 
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The aim of this note now is to prove that under mild conditions only 

these probabilistic representations are possible. 

THEOREM 1. Let ~~ be analytic in some interval [O,oJ, ° > 1, with 

non-negative coefficients. Then if any of the three representations 

given by (1), (2) or (3) holds for an arbitrary strongly continuous 

non-peri('dic semigroup {T(t) It.::.. O} with IIT(t)11 > 0, ~~ is necessa­

rily the generating function of a non-negative integer-valued random 

variable N with expectation E(N) = ~. In this case, the representa­

tions (1) and (2) hold true for every strongly continuous semigroup, 

and (3) holds true in case that A is bounded. 

PROOF. Let ~~(t) = I ak(~)tk for ° 2 t 2 0 
00 k=O 

with all a
k 

(0 .::.. 0. 

Then ~~(1) = L a (~) > ° 
L, k=O k 

since othf'3rwise ~~ :: 0, hence IIT(~)II = ° 
a

k 
(~) 

which is a contradiction. But then by {~~(1)} a probability distribu-

tion of some non-negative integer-valued random variable N is given, 

with 

being its generating function. 

By the inequality x < leXY for arbitrary x _> 0, y > 0, N is inte­
-y 

grable with 

E(N) < _1_ E(eN lno) 
- in 0 

< 00 

Also, since ~ ~ and hence ~~ are analytic in r 0,0 J with ° > 1, the 

characteristic function of N is analyt.ic in some complex neighbour­

hood of the origin, hence all of the relations 

* (4) T (l~)f 

* (5) T U;)f 

lim {~~(T*(~» }nf 
n~ 

* * n lim {~~(nR (n»} f 
n~ 
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(6) * T (l;;) f * 1 * n lim {'¥ ~ (I + n A )} f, f S f!( 
n~ 

* hold true for every strongly continuous semigroup {T (t) I t ~ o} 

(the latter only, if A * is bounded) ([7], Corollary 2; [8], (6». 
1 1 

Let Sn denote one of the operators T(n)' nR(n) or I+nA, correspond-

ing to which of the relations (1), (2) or (3) holds. Choose f sf!( 

such that IIT(~)f1l > 0, then 

o < IIT(~)fll = limll{'¥~(Sn)}nfll = lim('¥~(l»nll{'¥~(Sn)}nfll 
n~ n~ 

II T(l;;)fll < 00 by (4), (5) and (6), implying 

Let further g sf![ be such that II T (I;;) gil > O. Then 

00 > IIT(Ogll lim 
n~ 

with limll {'¥~ (Sn) }ngll = IIT(l;;)gll > 0 by (4), (5) and (6), implying 
n~ 

* '¥~(1) ~ 1. That is, '¥~(1) = 1 and hence '¥~ = '¥~. Again by (4), (5) 

and (6), 

T(l;;)f 

by assumption, hence T(l;;) 

lim '¥~(Sn)f T(~)f for all f sfJ1 
n~ 

T(~) • 

Suppose now l;; f ~, say l;; < ~. Then for n 

T(~)T(n) T(l;; +n) T(~) , 

hence the semigroup is periodic with period n which is a contradic­

tion to the assumption. Hence l;; = ~, and the theorem is proved. 

Note that the a.bove theorem is a strong extension of the general 

convergence theorem 1.2.6 in [1] in the case of strongly continuous 

semigroups since only one (essentially) arbitrary "test function" is 

needed. 
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The assumption of non-periodicity in the above theorem is only nec­

essary to guarantee that E(N) = ~. Without this assumption, the the­

orem essentially remains valid in that the representations (1), (2) 

and (3) hold true in general if T(~)f is replaced by T(~)f. 

Of course, the point in the above theorem is the assumption that the 

coefficients on ~~ are non-negative. One could ask now whether gen­

erally only probabilistic representations of the form (1), (2) or 

(3) are possible. But this is not true as can be seen by the follow­

ing non-probabilistic extension of Kendall's formula [5]. 

THEOREM 2. Let ~~(t) = l-~+~t for ~ > 1. Then (1), (2) and (3) 

hold true for every uniformly continuous semigroup {T(t) I t ~ O}. 

1 1 
PROOF. Let again Sn denote T(n)' nR(n) or I+nA, and let 

V n (S - I). Then A = lim V , and 
n n n n-+oo 

< { L (f)k 
k=2 n 

1 3~llv nil 
< -e 
-n 

for sufficiently large n. 

1 
< -e 
-n 

Since by the exponential formula, T(~) 

proved. 

lim e 
n-+oo 

~V 
n 

~llv II n 
e 

the theorem is 

REMARK. In [7J it was implicitly assumed that the mapping t 7 T(t) 

is-measurable and separably valued, which e.g. is true in the case 

of uniformly continuous semigroups. But the results in [6] remain 

also valid in the general strongly continuous case since for a 
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suitable non-negative random variable X 

{E (T(X»}f E(T(X)f), f efI 

defines a bounded linear operator on fI into f£ wi th the properties 

IIE(T(X»II ~E(IIT(X)II) and E(T(X+Y» = E(T(X»oE(T(Y» for independent 

random variables X and Y, where E (T (X) f) for f e fI is to be under­

stood as a Pettis expectation in the sense of Mourier [6J (which 

exists since the mappings t + T(t)f are continuous, hence measurable 

and separably valued (see also [2]». 
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