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In the recent years probabilistic representations of 

strongly continuous operator semigroups have re-raised a 

great deal of attention ([2] , [6] , [7], E8] , EI O]) ; a pos- 

sible explanation for this might be the fact that a proba- 

bilistic approach to representation theory seems to be the 

most natural one (cf. [8]). Besides individual representa- 

tion theorems also quite general probabilistic representa- 

tion formulas have been given in the literature (12], [3], 

[6], [7]), the most interesting ones being derived from 

the famous law of large numbers in probability theory. As 

will be shown in the present paper, all of these can be 

subsumed under a single probabilistic representation theo- 

rem based on a weak law of large numbers for a random num- 

ber of summands which now also includes the continuous 

versions of Hille's and Phillips' exponential formulas 

(compare [6], Corollary 2). Moreover, the general theorem 

gives rise to certain product representations with unequal 

factors which to our knowledge have not yet been considered 

in the literature before. As a main tool, we use a rigorous 

approach to integration theory of semigroup operator-valued 

random variables by means of an extended form of Pettis' 

integral. 
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I. PRELIMINARIES 

For a Banach space X with norm II.N, let @(~) denote the 

Banach algebra of bounded endomorphisms on X, and ~(~) de- 

note the Borel a-field generated by the norm-topology over 

X. We consider a strongly continuous operator semigroup 

{T(t) I t > O} ~ @(X), i.e. 

T(t +S) = T(t) o T(s), s,t > O I) 

T(O) = I (the identity operator) 2) 

lim llT(t)f-fll : O, f @~r. 
t~O 

3) 

It can be shown (cf. [I]) that (3) implies strong continu- 

ity, and that there exist constants M > I and ~ > O such 

that 

IIT(t) II < M e ~t, t > O. (4) 

As usual, let A denote the infinitesimal generator of the 
oo 

semigroup, and R(1) = fe-ltT(t)(.)dt, I > ~ denote its 
O 

resolvent. For a non-negative real-valued random variable 

X defined on some probability space (~,~,P) let 

~x(t) = E(t X) , t > O, denote the probability generating 

of X, and ~x(t) = E(etX), t @ IR, function denote the 

moment-generating function of X, where E(.) means expecta- 

tion. If N > 0 is an integer-valued random variable, then 

also 

co 

~N(t) [ P(N k)t k = = , t > o, (5) 
k=O 

and if {Yk I k @ IN} is a sequence of independent, identi- 

cally (as Y > O, say) distributed random variables, inde- 
N 

pendent of N, then for the random sum X = [ Yk (the empty 
k=1 

sum being zero) , 

~x(t) = ~N(~y(t)), t @ IR. (6) 

]8 
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(For a detailed probabilistic background, cf. e.g. Feller's 

monograph [4].) 

2. INTEGRATION THEORY 

The necessity for a separate integration theory for semi- 

group operator-valued random variables of the form T(X) 

where X > O is a suitable real-valued random variable is 

due to the fact that in the general strongly continuous 

case the mapping t § T(t) usually is neither Borel-measur- 

able w.r.t. ~(@(X)) nor separably valued, which means that 

possibly E[T(X)] does not exist as a Bochner- or Pettis 

integral in @(~) unless X is countably valued or the semi- 

group is uniformly continuous (i.e. A is bounded). More 

precisely, the following statement holds. 

THEOREM I. If lim inf liT(t) -T(to)Jj > 0 for some t > O, 
t+to o 

then the mapping t + T(t) is neither Borel-measurable (and 

hence not strongly measurable) nor separably valued. 

PROOF. It is easy to see that for any strongly continuous 

semigroup {T(t) j t > O} with T(t) ~ I there is some neigh- 
+ 

bourhood ~ ~ IR of the origin such that on~,T(.) is in- 

jective. Further, by the assumptions of the theorem, there 

exist ~,c > O such that 

inf liT(t) -T(to)lj ~ c (7) 
t <t<t +6 

O -- O 

which implies that for arbitrary O _< s _< t o 

c -~to * 
inf II T(t) -T(s)II ! ~ e = c > o. 

s<t<s+6 
(8) 

Without loss of generality, we may assume that 6 ~ t o 

T(.) is injective in~ ~ [0,6], hence by (8), 

and 

liT(t) -T(s)JJ > c* for s,t @~, s + t. 
i 

(9) 

19 
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Now choose a non-measurable set~4f~ ~ (which always exists); 

then T(~4 f) consists of uncountably many separated points in 

~(~r), i.e. T(~)is closed (and hence a measurable set in 

~(~(X))) and non-separable. But ~/= T -I (T(./~)) N~ which is 

Dot measurable by assumption hence T(.) is neither Borel- 

measurable nor separably valued.  9 

A simple example of a semigroup fulfilling the conditions 

of Theorem I is the semigroup of left translations on the 

space X = UCB(IR) of all uniformly continuous and bounded 

functions on IR (ef. [I]); here liT(t) -T(s) N = 2 for s +t. 

In order to be able to define expectations also for the 

general strongly continuous case, we now introduce an 

extension of Pettis' integral for 8(X) - valued mappings. 

The idea behind this extension is the fact that for the 

Banach space ~(~) less bounded linear functionals are 

necessary to guarantee uniqueness of the (extended) inte- 

gral. 

DEFINITION. Let (~,~,u) be a measure space and S :~ ~(X) 

a mapping such that f*(S(.)f) is Borel-measurable for all 

f @ X and f* @ ~*, the dual space of X. S is called 

u-~ntegrabZe if there exists an element J @ ~(X) such that 

* = . f* ~*. f (J(f)) ff~S( )f)d~ for all f @X, @ (10) 

J is then called the p-integral of S : J = fSdu. If ~ is 

a probability measure, then J is also called expectation 

of S : J = E(S). 

By a corollary of the Hahn-Banach theorem, J is uniquely 

determined in case of existence since for J1 'J2 @ ~(~r) 

* f* , @ we have with f (J1(f)) = (j2(f)) f @ ~r, f* X*, 

J1 (f) = J2 (f) ' f @ X and hence J1 -z J2" Further, 

F*(J) f*(J(f)) for fixed f @X, f @.~ and arbitrary 

J @ ~(~r) defines a bounded linear functional F ~ ~(.~r) 

20 
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with IIF*II ! l if*ll I l f l l ,  i.e. if S is Pettis-integrable in 

the ordinary sense, then S is also extended Pettis-inte- 

grable, and both integrals coincide. 

Note that if additionally S(.)f is Borel-measurable w.r.t. 

~(X) for some f @ ~, then also ~S(.)fdu exists as an 

ordinary Pettis-integral inX; in this case, also 

(fSd~)f : ~S(.)fdu. (11) 

We shall now give a simple sufficient condition for the 

existence of an extended Pettis-integral. 

LEMMA I. Suppose that S(.)f is Borel-measurable and sep- 

arably valued for every f @ ~ and that IISII is dominated by 

some integrable function g > O. Then S is extended Pettis- 

integrable, and 

i{fSd II < igd . ~, - j {  

PROOF. Since S(.)f is Borel- and hence weakly measurable 

and separably valued, by llS(.)fll < gllfll, S(.)f is Boehner- 

integrable, hence Pettis-integrable with 

IIIS(.)fd ll <__ Ilfll Igd . (12) 

But then 

J(f) = ~S(.)fd~, f @X 

defines a bounded endomorphism J @ @(~) with 

(13) 

IlOlf < Igd~ (14) 

by (12) , and 

W = fW f (J(f)) (]S(.)fdu) ff*(S(.)f)du, f @X, f*@X* (15) 

by the Pettis-integrability of S(.)f which says that S is 

extended Pettis-inteqrable with J= fSdu. Hence by (14), 

2] 
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H / s d ~ l l  < lg d u .  m (16) 

Note that ilsll need not be a measurable function, hence the 

inequality 

H/sd~ll < ll[sUd~ 

may be meaningless unless IXsll is measurable. 

(17) 

COROLLARY I. Let X > O be a real-valued random variable 
w 

such that ~X(~) < ~ where ~ is as in (4) . Then T(X) is 

extended Pettis-integrable with 

and 

llm[T(X)]ll < M ~X(~), 

E[T(X)]f = E[T(X)f-I, f @~ 

where the integral on the right hand side is an ordinary 

Pettis-integral. 

PROOF. Obvious from (4), (11) and Lemma I since T(.)f is 

continuous for every f @~, hence T(X) f is measurable and 

separably valued, m 

COROLLARY 2. Let X,Y > O be independent real-valued randcm 

variables such that ~X(m) and Cy(~) < ~. Then T(X) , T(Y) 

and T(X)oT(Y) are extended Pettis-integrable, and 

E [T(X)o T(Y) ] = E [T ( X) ]o E [T ( Y) ].  

PROOF. By Corollary I, T(X), T(Y) and T(X)o T(Y) = T(X+Y) 

are e x t e n d e d  P e t t is - in t e g r a b le  ( t h e  la t t e r  s in c e  

~X+y(~) = ~X(m)~y(~)) . TO prove Corollary 2, it suffices 

to s h o w 

f*((E[T(X) ]oE[T(Y)])f) = f*(EIT(X+Y) If) ( 1 8 )  

for all f @X, f* @~r*. But 

22 
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h*(h) = f*(E[T(X) ]h) : f*(EIT(X)hl) , h @~" (19) 

defines a bounded linear functional h* @ ~'* with 

jlh*ll ! [If*LlllEIT(X) I[I ! [If*lIM Ox(~ ).  (20) 

Now b y d e fin it io n  a n d  s o m e  w e ll- k n o w n  in t e g r a t io n  t h e o r e m s ,  

f*((~.IT(X) IoEIT(Y)I)f) : h* (~. [T (Y) ] f) = E [h* (T (Y) f) J 

= /h*(T(y)f)PY(dy) = ff*(E[T(X)oT(y)f] )PY(dy) 

: [E[f*(T(X)eT(y)f)]pY(dy) = fff*(T(x)oT(y)f)pX(dx)PY(dy) 

= f/f*(T(x+y)f)P (x'Y) (dx,dy) = ff*(T(X+Y) f)dP 

= f*E [T(X+Y)] f), 

where, for a random variable Z, pZ denotes the distribution 

of Z. l 

Note that Corollary 2 provides a rigorous proof of a 

similar relation in [31, p. 157 which was stated only 

heuristically. 

The following result is a generalization of Corollary 2 

to a random number of summands. 

COROLLARY 3. Let N > 0 be an integer-valued random vari- 

able and Y > O a real-valued random variable such that 

Oy(~)< = and ~N(0y(W)) < ~. Let further {Yk I k ~ ~} be 

a sequence of independent identically (as Y) distributed 
N 

random variables, independent of N, and X = [ Yk" Then 
k=1 

T(X) is extended Pettis-integrable, and 

E[T(X)] = 0N(E[T(Y)]) = [ P(N =m) {E[T(Y)] ] m, 
m=O 

where {E[T(Y)~ }o = I. 

23 
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PROOF. By Corollary 2, for m > I, 

m 

II{E[T(Y)]}mll = lIE[T( ][ Yk)]II < M~* 
k = l - -  m [ Yk 

k = l 

(~) 

= M{~y(~) }m 

which by M > I also holds for m = O. But then 

eo c o  

[ P(N =m) I[ {E [T (Y) ] }mll <_M ][ P(N =m){~y(CO)} m 
m = O  m = O  

(21) 

= M#N(~y(W)) < (22) 

by assumption, i.e. [ P(N =m) {E[T(Y)] } m is absolutely 
m=O 

convergent, hence convergent in 4~(~r) to ~N(E[T(Y)]) . Now 

with f @~, f* @ ~*, 

m 

f (E[T(X)]f) : [ P(N =m)E[f*(T( [ Yk)f)] 
m=O k=1 

oo 

: ][ P(N :m) f*( {E [T (Y) ] }mf) 
m=O 

hence 

co 

= f ( [ P(N =m) {E[T(Y)] }mf), 
m = O  

E[T(X)] = ~ P(N =m) {E IT(Y)] }m.  9 
m=O 

(23) 

3. THE REPRESENTATION THEOREM 

Before stating the main theorem we shall prove a weak law 

of large numbers for random sums in the setting of 

Corollary 3 which turns out to be basic for the general 

representation formula. 

24 
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LEMMA 2. Let {N(T) [ T > O} be a family of non-negative 

integer-valued random variables such that I_ N(~) converges 
T 

in probability to some constant ~ > O for  9 § ~. Let 

further {Yk I k @ IN} be a sequence of independent identi- 

cally (as Y >_ O) distributed random variables, independent 

of {N(T) I T > O}, with E(Y) = y. Then the random variables 
N(T) 

X(~) = [ Yk' T > 0 obey a law of large numbers, i.e. 
k=1 

I X(T) I N(T) 
-- - [ Yk --+ ~Y 
T T k = l  

in probability for T § ~. 

PROOF. For any event C @m{, let I C denote the indicator 

random variable, i.e. Ic(x) = I iff x @ C, and O other- 

wise. To prove the theorem, we split up the random sum 

into three parts: 

X(T) = [ Yk +I [ Yk 
I <k<~T {~T<N(T) } ~T<k<N(T) 

- I [ Yk" (24) 
{~T>N(T) } N(T)<k<~ 

By the classical law of large numbers, 

! [ Yk = ~ I_/_ [ Yk --+ {Y (25) 
T l < k < ~ T  ~T l < k < ~ T  

in probability for ~ § ~. For the remainder terms in (24), 

choose ~ > O and 0 < n ! i--~7. Then again by the law of 

large numbers, 

= ! ~ Yk * ny < ! ~ Yk q qr 
~T<k!(~+n) ~ ~T<ki~T+n~ 

(26) 

in probability for ~ + =, hence 

25 
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! [ ,z k >_ ~) P ( I { ~ ' c < N ( T ) }  T cT<k<N(T)  

< p({C~<N(T) }N {1 
-- T 

[ Yk > e}) +P(N(T)>(C+q)T) 
CT<k<N(T) 

< p ( !  [ Yk > s) + P ( ~ N ( T ) >  C+q) ~ O (27) 
- -  T 6T<k<(c+D)T 

by (26) and the assumptions of the lemma, hence 

1 ~' Yk § 0 (28) 
T I {~<N(T) } ~<k<N(T) 

in probability for T § ~; similarly for the third summand 

in (24). Hence by (25), 

N(T) 
I X(T) -- I ~ Yk § {~ (29) 
T T k=1 

in probability for T + ~.  9 

THEOREM 2. Let {T(t) I t > O} be a strongly continuous 

operator semigroup, and let {N(T) I t > O} and Y be as in 

Le~ma 2 such that for the probability generating functions 

~N(T)' CN(T) (61) < ~ for some 61 > I and all T > O, and 
w 

that r < ~ for some 62 > O. Then if 

*(r/~)) < = (30) lim sup SN(T)($Y T 
T-~ 

for some r > I, we have ~N(T)(E[T(Y)]) @ @(X) for suffi- 

ciently large T with 

<_ M (BI) 

and the semigroup representation 

T(~) = lim ~N(T)(EIT(Y)]) 
T-~eo 

26 
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holds in the strong sense where ~ : %y. 

PROOF. Choose {Yk I k @ ~} as in Lemma 2. Then by Corol- 

lary 3 for sufficiently large ~, T( ~ X(~)) is extended 
' T 

Pettis-integrable with 

EIT(1 X(~)) I ~  = ~N(T) (E[T(Y) I ) @ @(,~') (32) 

and 

(El T(Y) l)I[ < M (33) 

by (22). Further, for sufficiently large T, 

r* E(HT( X(~))fllr) <-- Mr]Ifll ~X(m) (r~) 
T 

* (r~, = MrlIf[[r~N(T)(~y -~-)) (34) 

by (4), hence by (11), (32), Lemma 2, the assumptions and 

Lemma I in 131, the theorem follows, i 

Note that (30) is always fulfilled for any such random 

variable Y if 

lim sup ~N(T)(~) < ~ 
T->OO 

for some ~ > ~y since by Taylor expansion, 

(35) 

*(rm) : I + r~7 + 0 (%) (~ + ~) , 
CY T --~-- 

T 

hence for sufficiently large  9 and I < r < ~7' 

< E[exp{( rm7 +O(%))N(~)}] 
-- T 

I 

*, ~ (r~u +~( )) < ,N(~) (!) " ~Nt~j T -- T 
T 

36) 

(37) 

The condition ~ > wy is not very restrictive since for 

equi-bounded semigroups (i.e. ~ = O) it reduces to 6 > O; 

27 
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in the general case, instead of T(t), t > O the equibounded 

semigroup S(t) = e-mtT(t), t > O might be considered. 

In what follows we shall show how the various representa- 

tion theorems given in the literature follow from Theorem 

2 by specialisation. 

COROLLARY 4. Let N be a non-negative integer-valued ran- 

dom v a r ia b le  w it h  E ( N )  = ~ a n d  Y > O b e  a  r e a l- v a lu e d  r a n -  

dom variable with E(Y) = y such that ~N(~I) < ~ for some 

6 1 > 1 a n d  ~ y ( 8  2 )  < ~ fo r  s o m e  ~ 2  > O .  T h e n  fo r  s u ffi-  

c ie n t ly  large n ~ IN, *N(E[T(~)]) ~ ~(X) with 

: (38) 

and 

T(6) = lira {~N(E[T(Y)]) } n 
n-~ 

in the strong sense where ~ = ~y. 

PROOF. Let {N k Ik ~ IN} be a sequence of independent, 

identically (as N) distributed random variables, and let 

N(~) = X N k, ~ > O. (39) 
1<k<~ 

Then by the law of large numbers, 

I -- N(T) + ~ (40) 
T 

in probability for T § ~. Further, since 

~N(~) = ~T~, T > O (41) 

(where ~T] denotes the greatest integer not exceeding T), 

we have 

~N(T) ( ) = {~N(?) = (I --+~(~ ) § 6 (42) 
T 

for T § ~ and every 8 > O, hence the corollary follows by 

28 
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(35) and Theorem 2 for the integer subsequence. J 

Corollary 4 is the main theorem in [6] from which by 

specifying the distributions of N and Y as binomial, geo- 

metric, exponential etc. the representation theorems of 

Butzer-Hahn [2], Chung [3], Kendall [5], Shaw [10] and 

others immediately follow (see [6]). 

COROLLARY 5. Let {N(x) I t > O] be as in Lemma 2 such that 

}N(T) (61) < ~ for some 61 > I and all t > O, and that for 

some 62 > 2~ ! 

. 62 
lim sup ~N(t)(~) '< ~" 

Then all of the relations 

T(~) = lim ~N(x)(T(~)) (43) 

~t R(~)) (44) T(~) = lim #N(~)(--~ 
t-~0o 

(k m I ( < ) kAk) T(~) = lim ~N(t) [ ~. ~-~ , m ~ IN (45) 
T +~ =O 

hold in the strong sense (the latter only in case A is 

bounded ) . 

PROOF. Obvious from (35) and Theorem 2 by choosing Y ~ 

or Y being exponentially distributed with mean ~. Relation 

(45) follows from (43) by Taylor expansion of the semi- 

group using methods sketched in [7]. I 

Choosing {N(t) I t > O} as a Poisson process with parameter 

~, Hille's and Phillips' exponential formulas are reobtain- 

ed from Corollary 5. 

COROLLARY 6. For all ~ > O, 

T(~) = lim exp {~[T(1) -I]} 
T 

T-~Oo 

(46) 

29 
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T(~) = lim exp {~T2R(~) -~I} (47) 

T(~) = exp {~A} (48) 

in the strong sense (the latter only in case A is bounded). 

PROOF. For a Poissson process with parameter ~, _I N(T) § 
% 

in probability for T + ~, and #N(r) (t) = exp(~T (t-1) ) , 

hence ~N(~) (~I) < ~ for all 61 > I and T > O, and 

. 6? 62/~ ~62 
~N(T) (-~) = exp(~r (e -I)) § e (49) 

as Y § ~ for all 62 > O. Relations (46) to (48) now follow 

from (43) to (45) (with m = I).  9 

COROLLARY 7. Let A be bounded and N be a non-negative 

integer-valued random variable with E(N) = ~ such that 

~N(6) < ~ for some 6 > I. Then for all m ~ IN, 

m n ~ I ~ k k 
T(~) = lim ~N( k~ ~ (~) A ) 

n§ 0 

in the uniform sense. 

PROOF. Obvious from (45) and the proof of Corollary 4; 

note that any 62 ! 211All ~ can be chosen (cf. also (42)) . 

The uniform convergence can be deduced from uniform 

estimations in the proof of Theorem 2.  9 

Corollary 7 is a slight generalization of the representa- 

tion theorems given in [7]. 

COROLLARY 8. Let {N k I k ~ IN} be a sequence of non-nega- 

tive integer-valued random variables with E(N k) = ~k such 

that #Nk(61 ) < ~ for some 61 > I and all k, and let Y >_ O 

be a real-valued random variable with E(Y) = ~ such that 

~y(62) < ~ for some 62 > O. Then if 

n 

~N k (r~) lim sup IT (~y -~ ) < ~ 
n§ k=1 

30 
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lim sup 
n+~ 

and if 

for some r > I (or alternatively, 

n 
I I ~N (~) < ~ for some ~ > ~7) 
k=1 k 

n 

lim 1 [ Var(N k) = O 
n+~ ~ k=1 

(where Vat means variance) and 

I n 
lim ~ [ ~k : ~ exists, 
n+~ k=1 

the semigroup representation 

n 
T(~) = lira II (EIT(~)]) 

n+~ k=1~Nk 

holds in the strong sense where ~ = ~y. 

PROOF. Without loss of generality we may assume all 

random variables to be independent. As in the proof of 

Corollary 4, let N(~) : ~ N k. Then by our assumptions 
1<k<~ 4 

and the law of large numbers again LN(T) § ~ in probabi- 
r T 

+ = 1<k<T[: ~Nk , the corollary now lity for ~ ~. Since ~N(~) 

follows from Theorem 2 and (35).  9 

Corollary 8 is an extension of Corollary 4 to a product 

representation formula with not necessarily equal factors. 

The following result is the corresponding analogue of 

Corollary 5. 

COROLLARY 9. 

and if 

and 

Let {N k [ k @ IN} be as in Corollary 8. If 

n 
lira sup fox some 

n§ k=1 k 

I n 

lim -~ [ Var(N k) = O 
n§ n k=1 

n 
I 

lim ~ [ ~k = ~ exists, 
n§ k=1 

3! 
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then 

n 

T($) = lim ! i ~Nk(T(~-~)) 
n§ k:1 

(5o) 

n 

T(<) = lim [! ~Nk( ~ R(~) 
n~+~ k=1 

(51) 

n m 

T(<) = n+ ~~ k=1 ~-- ~Nk(j-[-o(~n)]AJ)' m ~ IN (52) 

in the strong sense (the latter only in case A is bounded). 

COROLLARY 10. 

then 

If 

I n 
lim n k> ~' ~k = ~ exists, 
n+~ =I 

n 

T(~) = lim --[exp {r ) -I] } 
n§ k=1 

(53) 

n 

T(6) = lim -,: exp {~k[ ~ R(~)-I] } 
n+~ k:1 

in the strong sense. 

(54) 

PROOF. Let N k be Poisson distributed with mean Ck" Then 

for every 6 > O, 

n , 6 n 6/n 
~N k(~) = ~ exp {~k(e - I) ] 

k=1 k=1 

n __12 < exp {~ [ Ck +0( ) } § e (55) 
-- n k=1 n 

n 
for n + ~. Also, since Var(N k) = Ck' lim -~ [ Var(N k) :0, 

n+~ n k=1 
hence the statement follows from Corollary 9.  9 

Note that Corollary 10 is a natural generalization of 

Hille's and Phillips' exponential formulas to product 

representations of operator semigroups. 
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It should be pointed out that the general probabilistic 

approach to representation theory as chosen in this paper 

also permits statements on rates of convergence in the 

general as well as in the individual representation formu- 

las (cf. also [2]); these approximation theoretic aspects 

of representation theory are dealt with in more detail in 

a forthcoming paper [9]. 
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