
 1

Tail-dependence properties of some new types of copula models (part II) 
 
Dietmar Pfeifer1 
Institut für Mathematik 
Fakultät V 
Carl-von-Ossietzky Universität Oldenburg 
 
October 2025 
 
Key words: copula construction, tail dependence 
 
2020 Mathematics Subject Classification: 062H05, 062H20 
 
Abstract We continue the investigation of the tail-dependence behaviour of some new types of 

copula models, published recently in [5] and [6]. 

 
1. Introduction. For the sake of simplicity, we concentrate our investigations to the two-

dimensional case. Let 1 2,U U  be standard random variables, i.e. they follow a uniform distribution 

over the interval [ ]0,1  each. Let further 1 2,T T  be real continuous functions over 2  and 

( ) ( )1 1 1 2 2 2 1 2, , , .= =W T U U W T U U  If 1 2,W W  already follow a continuous uniform distribution over 

[ ]0,1  each, then ( )1 2,W W  is a representative of a two-dimensional copula. Otherwise, 

( ) ( ) ( )( )1, 2 1 1 2 2: ,=V V F W F W  is a representative of a two-dimensional copula if iF  denotes the 

continuous c.d.f. of , i 1, 2.=iW  
 

Of particular interest especially for financial markets or risk management is the tail dependence of 

copulas which was explicitly treated for dependence-of-unity copulas in  [2], [3] and [4], and for 

the new approach in [6], which we shall continue here. The simplest definition of the coefficient 

Ul  of upper and Ll  of lower tail dependence is 
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7.36, p.247. 

 

In case that 1 2 ,=F F  i.e. 1 2andW W have same distribution, we also have 
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2. Particular Cases.  

 
Case 1. Here we consider the choice 
 
  ( )1 1 1 2 1 2 2 2 1 2 1 2( , ) , ( , ) max , .= = + = =W T U U U U W T U U U U   

 
It is easy to see that the corresponding c.d.f.’s  are given by  
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The following graph shows 10.000 simulations of ( ) ( )( )1 2 1 1 2 2( , ) , .=V V F W F W  

 
 

The red lines ( , )u v  represent the (sharp) lower and upper envelopes of the copula, which are 
given by 
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The lower bound is reached if 1V  and 2V  are close to each other, while the upper bound is reached 

if  one of  1V  or 2V  is close to zero. 
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The subsequent graph explains our arguments for the calculation of the coefficient Ul  of upper 

tail dependence, which is given by 0.Ul =  

 
We start with some preliminary inequalitites. 
 

 
 

We have, for 
1

,
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t>  with m  denoting Lebesgue measure, 
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or, by a Taylor expansion around the point 1,t =   
 

( ) ( )3/2 2( ) 2(1 ) (1 ) ,A t t tm = - + -  hence 
( )

1

( )
lim 0,

1U
t

A t

t

m
l


= =

-
 as stated. 

 

The subsequent graph explains our arguments for the calculation of the coefficient lL  of lower tail 

dependence, which is given by ( )2 2 1 0,828427...l = - =L . 
 

We start again with some preliminary inequalitites. 
 

 



 4

  

We have, for 
1

,
2

t>  with 2 1,c= -   

( ) ( )

( )
{ }

1 1
1 2 2 1 2 1 1 2 2 1

2
2

max( , ) ( ), ( ) max( , ) , 2

(1 ) (1 )
( ) 1 2

2 2
m

- -£ + £ = £ £ -

- æ ö- ÷ç ÷= = - = - =ç ÷ç ÷çè ø

P U U F t U U F t P U U t U t U

c t c
A t t t ct

 

and hence 
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Case 2. Here we consider the choice  
 

1 1 1 2 1 2 2 2 1 2 1 2( , ) , ( , )a b b a= = = =W T U U U U W T U U U U  with real , 0.a b>   

 
For simplicity, let 1 2: , : .= =U U V U   

 
The common c.d.f. of U and V is given by 
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which can be seen as follows.  
 

 
For 0 1,< <x  there holds 
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by symmetry reasons. 
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The following graphs show 10,000 simulations each of the copula given by ( )( )1 2, ( ) ,F W F W  for 

different values of a  and .b   
   

 
 

                           3, 1a b= =                                                           3, 2a b= =  
 

 
 

                          4, 3a b= =                                                          4, 3.5a b= =  
 
The red lines ( , )u v  represent the (sharp) lower and upper envelopes of the copula, which are 
given by 
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Note that for ,a b  the copula tends to the independence copula, and for ,a b»  we obtain the 
upper Fréchet bound. Note also that the copula is symmetric in , .a b   
 
The subsequent graph explains our arguments for the calculation of the coefficient lL  of lower tail 

dependence, which is given by 0.l =L  First notice that for 0 1,< <x  the intersection point of 
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The subsequent graph explains our arguments for the calculation of the coefficient lU  of upper 

tail dependence, which is given by 
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If ,a b>
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With, by a Taylor expansion around 1,=x   
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