Power inequalities: for which positive a, b is $a^b > b^a$?

Dietmar Pfeifer

Institut für Mathematik, Fakultät V, Carl-von-Ossietzky Universität Oldenburg

Abstract. In this note, we investigate the question for which positive real numbers a, b the inequality $a^b > b^a$ holds true in general.

Key words: power inequalities, Lambert W function

1. Motivation

During the first term of my mathematics study we were given the following exercise: Decide without numerical calculation which number is larger, e^{π} or π^{e} , where $e = \exp(1)$? Here is a simple approach to a solution:

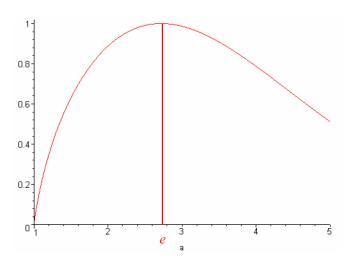
2. Theorem 1

For any real number $x \ge 0$ there holds $e^x \ge x^e$ with equality only if x = e.

Proof: It is an elementary fact that for any real $z \neq e$, there holds $e^z \geq 1+z$ with equality only for z=0. (C.f. e.g. [1], Problem 21, p.298 or [3], Exercise 72, p. 363.) Clearly, $f(z):=e^z-1-z$, $z\in\mathbb{R}$ defines a strictly convex function due to $f''(z)=e^z>0$, with a minimum attained in $z_0=0$ with $f(z_0)=0$ because of $f'(z_0)=0$. It follows that $e^{z-1}\geq z$ or $e^z\geq e\cdot z$ with equality only for z=1. Replacing $e\cdot z$ with x we obtain $e^{x/e}\geq x$ for $x\in\mathbb{R}$ or $e^x\geq x^e$ for $x\geq 0$, with equality only for x=e.

Thus $e^{\pi} > \pi^{e}$. Numerically, we have $e^{\pi} = 23.14069264$, $\pi^{e} = 22.45915771$.

3. Theorem 2


Let a be a positive real number. If a < e, then there holds $a^b \ge b^a$ for all $b \le a$. If a > e, then there holds $a^b \ge b^a$ for all $b \ge a$. In general, we only have $a^b \ge e^a \cdot \left(\frac{\ln(a)}{a}\right)^a \cdot b^a$ and $a^b \le e^{-b} \cdot \left(\frac{b}{\ln(b)}\right)^b \cdot b^a$ for a, b > 0.

Proof: By Theorem 1, the statement is true for a = e.

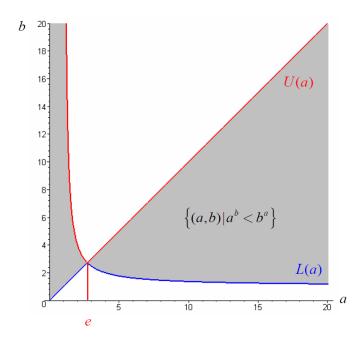
Now let
$$f(x,a) := \ln \left(\frac{a^x}{x^a} \right) = x \cdot \ln(a) - a \cdot \ln(x), \ x > 0.$$

We have
$$\frac{\partial}{\partial x} f(x, a) := \ln(a) - \frac{a}{x}$$
 and $\frac{\partial^2}{\partial x^2} f(x, a) := \frac{a}{x^2} > 0$ for $x > 0$.

So for fixed a, f(x,a) is strictly convex for x>0, with $\frac{\partial}{\partial x}f(x,a)=0$ for $x_0:=\frac{a}{\ln(a)}$ (giving a minimum point of the function in x), i.e. f(x,a) is decreasing in x for $x< a \le x_0 = \frac{a}{\ln(a)}$ if a< e and increasing in x for $x>a\ge x_0 = \frac{a}{\ln(a)}$ if a< e with f(a,a)=0 in either case. Note that $f(x_0,a)=a\cdot (1-\ln(a)+\ln(\ln(a)))\le 0$ and equality only for a=e, and that by Theorem 1, $e^a\ge a^e$ with equality only for a=e, i.e. $a\ge e\cdot \ln(a)$ or $\ln(a)\ge 1+\ln(\ln(a))$. This proves Theorem 2.

plot of the function
$$g(a) := e^a \cdot \left(\frac{\ln(a)}{a}\right)^a$$
, $a \ge 1$

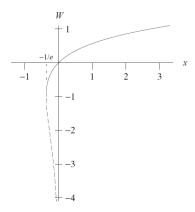
This means that the question for which positive real numbers a, b the inequality $a^b > b^a$ holds true in general can be answered as follows:


Whenever a = e, the inequality is true for all positive $b \neq e$. If $a \neq e$, the inequality is only partially true.

Example. Let a=2 and b=3. Then $a^b=8<9=b^a$. If a=2 and b=5, we have $a^b=32>25=b^a$. Note that by Theorem 2, we have

$$0.8875... = e^2 \cdot \left(\frac{\ln(2)}{2}\right)^2 \le \frac{2^3}{3^2} = 0.\overline{8} \le e^{-3} \cdot \left(\frac{3}{\ln(3)}\right)^3 = 1.0137...$$
 and

30 Dietmar Pfeifer


$$0.8875... = e^{2} \cdot \left(\frac{\ln(2)}{2}\right)^{2} \le \frac{2^{5}}{5^{2}} = 1.28 \le e^{-5} \cdot \left(\frac{5}{\ln(5)}\right)^{5} = 1.9498...$$

plot of the complementary area $\{(a,b)|a^b < b^a\}$

Note that the lower bound L(a) of this graph, colored in blue, is given by a transformation of the Lambert W function as $L(a) = \exp\left(-W\left(\frac{1}{a}\ln\left(\frac{1}{a}\right)\right)\right)$, a>0 as can be seen as follows:

starting with the equation $a^b = b^a$, we get $b \cdot \ln(a) = a \cdot \ln(b)$. Substituting $b = e^{-c}$, this gives $e^{-c} = -\frac{a}{\ln(a)} \cdot c$, hence $c \cdot e^c = -\frac{\ln(a)}{a} = \frac{1}{a} \ln\left(\frac{1}{a}\right)$, which by inversion leads to $c = W\left(\frac{1}{a}\ln\left(\frac{1}{a}\right)\right)$ or $b = \exp\left(-W\left(\frac{1}{a}\ln\left(\frac{1}{a}\right)\right)\right)$. Note further that for 0 < a < e, we have L(a) = a. Likewise, it can be seen that the upper bound U(a), coloured in red, is given by the expression $U(a) = \exp\left(-W_{-1}\left(\frac{1}{a}\ln\left(\frac{1}{a}\right)\right)\right)$, a > 0 where W_{-1} denotes the branch of W with values beneath -1. Note also that for a > e, we have U(a) = a and $U(a) = \infty$ for 0 < a < 1. For a thorough discussion of the Lambert W function, see [2].

graph of W_{-1} (dotted), taken from [2]

This means that we have the following final Theorem.

4. Theorem 3

For positive real numbers a,b there holds $a^b > b^a$ iff b < L(a) or b > U(a), with $L(a) = \exp\left(-W\left(\frac{1}{a}\ln\left(\frac{1}{a}\right)\right)\right)$ and $U(a) = \exp\left(-W_{-1}\left(\frac{1}{a}\ln\left(\frac{1}{a}\right)\right)\right)$ as above.

Remark. It can be shown that in general, we alternatively have $a^b \ge \left(\ln(a) \cdot b\right)^e$ with equality for $b = \frac{e}{\ln(a)}$. This follows from the fact that $a^b \ge e \cdot \ln(a) \cdot b$ as can be seen by

a discussion of the function $f(x,a) := \ln\left(\frac{a^x}{e \cdot \ln(a) \cdot x}\right) = x \cdot \ln(a) - 1 - \ln\left(\ln(a)\right) - \ln(x)$

which is strictly convex in x because of $\frac{\partial^2}{\partial x^2} f(x, a) = \frac{1}{x^2} > 0$ with

$$\frac{\partial}{\partial x} f(x, a) = \ln(a) - \frac{1}{x} = 0 \text{ for } x = \frac{1}{\ln(a)} \text{ and } f\left(\frac{1}{\ln(a)}, a\right) = 0.$$

Final Remark. The topic of mathematical inequalities of different types has a long history, see e.g. [5]. Our inequalitiy is perhaps related to a paper of Seiichi Manyama [4], who proves

$$a^{ea} + b^{eb} \ge a^{eb} + b^{ea}$$
 for all positive a, b .

Also, the proof of Theorem 3 gives another nice application of the Lambert W function besides those listed in [2].

REFERENCES

[1] M. Spivak (1967): Calculus. W.A. Benjamin, Inc., N.Y.

32 Dietmar Pfeifer

[2] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey and D. E. Knuth (1996): On the Lambert W function. Advances in Computational Mathematics, Vol. 5, 329-359.

- [3] S.L. Salas, E. Hille and G.J. Etgen (2007): Calculus. One and several variables. Wiley, N.Y.
- [4] S. Manyama (2010): Solution of one conjecture on inequalities with power exponential functions. The Australian Journal of Mathematical Analysis and Applications 7, Issue 2, 1-3.
- [5] https://en.wikipedia.org./wiki/List_of_inequalities