Power inequalities: for which positive a, b is $a^b > b^a$?

Dietmar Pfeifer Institut für Mathematik Fakultät V Carl-von-Ossietzky Universität Oldenburg

July 2025

Key words: power inequalities, Lambert W function **2020 Mathematics Subject Classification:** 26D07

Abstract. In this note, we investigate the question for which positive real numbers a, b the inequality $a^b > b^a$ holds true in general.

Motivation. During the first term of my mathematics study we were given the following exercise: Decide without numerical calculation which number is larger, e^{π} or π^{e} , where $e = \exp(1)$? Here is a simple approach to a solution:

Theorem 1. For any real number $x \ge 0$ there holds $e^x \ge x^e$ with equality only if x = e.

Proof: It is an elementary fact that for any real $z \neq e$, there holds $e^z \ge 1+z$ with equality only for z = 0. (C.f. e.g. [1], Problem 21, p.298 or [3], Exercise 72, p. 363.) Clearly, $f(z) := e^z - 1 - z$, $z \in \mathbb{R}$ defines a strictly convex function due to $f''(z) = e^z > 0$, with a minimum attained in $z_0 = 0$ with $f(z_0) = 0$ because of $f'(z_0) = 0$. It follows that $e^{z-1} \ge z$ or $e^z \ge e \cdot z$ with equality only for z = 1. Replacing $e \cdot z$ with x we obtain $e^{x/e} \ge x$ for $x \in \mathbb{R}$ or $e^x \ge x^e$ for $x \ge 0$, with equality only for x = e.

Thus $e^{\pi} > \pi^{e}$. Numerically, we have $e^{\pi} = 23.14069264$, $\pi^{e} = 22.45915771$.

Theorem 2. Let *a* be a positive real number. If a < e, then there holds $a^b \ge b^a$ for all $b \le a$. If a > e, then there holds $a^b \ge b^a$ for all $b \ge a$. In general, we only have $a^b \ge e^a \cdot \left(\frac{\ln(a)}{a}\right)^a \cdot b^a$

Proof: By Theorem 1, the statement is true for a = e. Now let $f(x,a) := \ln\left(\frac{a^x}{x^a}\right) = x \cdot \ln(a) - a \cdot \ln(x), \ x > 0$. We have $\frac{\partial}{\partial x} f(x,a) := \ln(a) - \frac{a}{x}$ and $\frac{\partial^2}{\partial x^2} f(x,a) := \frac{a}{x^2} > 0$ for x > 0.

D. Pfeifer (🖂)

Institut für Mathematik, Schwerpunkt Versicherungs- und Finanzmathematik, Carl von Ossietzky Universität Oldenburg, Oldenburg, Deutschland

E-Mail: dietmar.pfeifer@uni-oldenburg.de

So for fixed *a*, f(x,a) is strictly convex for x > 0, with $\frac{\partial}{\partial x} f(x,a) = 0$ for $x_0 := \frac{a}{\ln(a)}$ (giving a minimum point of the function in *x*), i.e. f(x,a) is decreasing in *x* for $x < a \le x_0 = \frac{a}{\ln(a)}$ if a < e and increasing in *x* for $x > a \ge x_0 = \frac{a}{\ln(a)}$ if a < e with f(a,a) = 0 in either case. Note that $f(x_0, a) = a \cdot (1 - \ln(a) + \ln(\ln(a))) \le 0$ and equality only for a = e, and that by Theorem 1, $e^a \ge a^e$ with equality only for a = e, i.e. $a \ge e \cdot \ln(a)$ or $\ln(a) \ge 1 + \ln(\ln(a))$. This proves Theorem 2.

This means that the question for which positive real numbers a, b the inequality $a^b > b^a$ holds true in general can be answered as follows:

Whenever a = e, the inequality is true for all positive $b \neq e$. If $a \neq e$, the inequality is only partially true.

Example. Let a = 2 and b = 3. Then $a^b = 8 < 9 = b^a$. If a = 2 and b = 5, we have $a^b = 32 > 25 = b^a$. Note that by Theorem 2, we have $0.8875... = e^2 \cdot \left(\frac{\ln(2)}{2}\right)^2 \le \frac{2^3}{3^2} = 0.\overline{8} \le e^{-3} \cdot \left(\frac{3}{\ln(3)}\right)^3 = 1.0137...$ and $0.8875... = e^2 \cdot \left(\frac{\ln(2)}{2}\right)^2 \le \frac{2^5}{5^2} = 1.28 \le e^{-5} \cdot \left(\frac{5}{\ln(5)}\right)^5 = 1.9498...$

plot of the complementary area $\{(a,b)|a^b < b^a\}$

Note that the lower bound L(a) of this graph, colored in blue, is given by a transformation of the Lambert W function as $L(a) = \exp\left(-W\left(\frac{1}{a}\ln\left(\frac{1}{a}\right)\right)\right)$, a > 0 as can be seen as follows: starting with the equation $a^b = b^a$, we get $b \cdot \ln(a) = a \cdot \ln(b)$. Substituting $b = e^{-c}$, this gives $e^{-c} = -\frac{a}{\ln(a)} \cdot c$, hence $c \cdot e^c = -\frac{\ln(a)}{a} = \frac{1}{a}\ln\left(\frac{1}{a}\right)$, which by inversion leads to $c = W\left(\frac{1}{a}\ln\left(\frac{1}{a}\right)\right)$ or $b = \exp\left(-W\left(\frac{1}{a}\ln\left(\frac{1}{a}\right)\right)\right)$. Note further that for 0 < a < e, we have L(a) = a. Likewise, it can be seen that the upper bound U(a), coloured in red, is given by the expression $U(a) = \exp\left(-W_{-1}\left(\frac{1}{a}\ln\left(\frac{1}{a}\right)\right)\right)$, a > 0 where W_{-1} denotes the branch of W with values beneath -1. Note also that for a > e, we have U(a) = a and $U(a) = \infty$ for 0 < a < 1. For a thorough discussion of the Lambert W function, see [2].

graph of W_{-1} (dotted), taken from [2]

This means that we have the following final Theorem.

Theorem 3. For positive real numbers a,b there holds $a^b > b^a$ iff b < L(a) or b > U(a), with $L(a) = \exp\left(-W\left(\frac{1}{a}\ln\left(\frac{1}{a}\right)\right)\right)$ and $U(a) = \exp\left(-W_{-1}\left(\frac{1}{a}\ln\left(\frac{1}{a}\right)\right)\right)$ as above.

Remark. It can be shown that in general, we alternatively have $a^b \ge (\ln(a) \cdot b)^e$ with equality for $b = \frac{e}{\ln(a)}$. This follows from the fact that $a^b \ge e \cdot \ln(a) \cdot b$ as can be seen by a discussion of the function $f(x,a) \coloneqq \ln\left(\frac{a^x}{e \cdot \ln(a) \cdot x}\right) = x \cdot \ln(a) - 1 - \ln(\ln(a)) - \ln(x)$ which is strictly convex in x because of $\frac{\partial^2}{\partial x^2} f(x,a) = \frac{1}{x^2} > 0$ with $\frac{\partial}{\partial x} f(x,a) = \ln(a) - \frac{1}{x} = 0$ for $x = \frac{1}{\ln(a)}$ and $f\left(\frac{1}{\ln(a)}, a\right) = 0$.

References.

- [1] M. Spivak (1967): Calculus. W.A. Benjamin, Inc., N.Y.
- [2] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey and D. E. Knuth (1996): On the Lambert W function. Advances in Computational Mathematics, Vol. 5, 329 – 359.
- [3] S.L. Salas, E. Hille and G.J. Etgen (2007): Calculus. One and several variables. Wiley, N.Y.