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Abstract

We investigate the tail-dependence behaviour of some new types of

copula models, published recently in [8].

1. Introduction

There are many approaches to copula modelling in the literature, cf.,
e.g., the References below. Here we consider the following general

approach: let U = {Uk}keN be a sequence of independent standard
random variables, i.e., each U, has a continuous uniform distribution

over the interval [0, 1]. Let further T3, ..., T,,, n € N be real continuous

n»

functions over RN and V; = T;(U) for i =1,..,n with a continuous
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uniform distribution over [0,1] each. Then V = (Vy, .., V,) is a

representative of an n -dimensional copula.

Note that if W; = T;(U) is not directly uniformly distributed then
V; = F;(W;) is so if F; denotes the c.d.f. of W,.

Of particular interest especially for financial markets or risk
management is the tail dependence of copulas w.r.t. to joint extremes,
see, e.g., [1] or [3]. While in [5], [6] and [7], the topic of tail dependence
was explicitly treated for dependence-of-unity copulas, it was not
addressed for the new approach in [8] yet, which we shall catch up on
here. For the sake of simplicity, we restrict ourselves to the two-

dimensional case n = 2 with (W;(U), W,(U)) representing the pre-copula
construction. The simplest definition of the coefficient A;; of upper and

A, of lower tail dependence is

ay = lim P> F710), Wo(U) > G71(1)
tT1 1-t ’

7‘L = lim P(VVl(U) < F_l(t), Wz(U) < G_l(t))
0 ¢ ’

where F denotes the c.d.f. of W;(U) and G the c.d.f. of Wy(U), see, e.g.,
([5], Def. 7.36, p. 247).

2. Particular Cases

Case 1. In [8], this refers to Case 2. Let W;(U)= U +Us,,
W, (U) = Uy - Us. Tt is easy to see that the c.d.f. G is given by

Gx)=(1-1In(x)) - x, 0<x<1 and
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The first formula follows from the observation that - In(Ws(U))

represents the sum of two independent standard exponentially

distributed random variables, hence is gamma-distributed. The inverse

function G™! is not available in elementary form, but F7' can easily be

calculated as

The following graph shows 10,000 simulations of V.
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The red lines (u, v) represent the lower and upper envelopes of the

copula, which are given by

0, if u< l,
Vlower = 2
(1-+v2-2u)1+1In(1-v2-2u)), otherwise
U 1_m ; <1
5 (1 ln(zjj, if u < ok
and Vypper = 1 1 1
(1—§V1—uj-(1—21n(1—§\/1—ujj, if u > 5
see [8].

In what follows we denote by p the two-dimensional Lebesgue

measure. The subsequent graph explains our arguments for the

calculation of the coefficient Ay; of upper tail dependence, which is given

by Ay =1. We use some preliminary inequalities.
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For 0 <t <1, we have
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PU+V2F(),U-V2G7)) = P(V >Fl)-U,V >

which, by the substitution s = G_l(t) or t = G(s), gives

Ay = 11%111%P(U+ VeFW), UV > G6e)
lim 7=

ST k€l ) TN ) S
o 20 -1) st 20-G(s) — 7

hence Ay =1, as stated. Note that by a Taylor expansion around the

point s =1, we have G(s)=1- % (s — 1)2 +0((s - 1)3 ), hence 2(1 - G(QS))
-s)

=1+0(s-1).

The subsequent graph explains our arguments for the calculation of

the coefficient A, of lower tail dependence, which is given by A; = 0.
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Here we use the inequality

-1 F)
w(A0) < w(a6)U BE) = S0 g1 4 G(t)

=G7H)+ G‘l(t)ln[lgl(t)z} 0<t<l,

where p(A() = PU+V < FY(t),U-V < G7(t)).

Now, since F't)=~+2t for tl 0 and limG(s)=0, with the

sl0
substitution ¢ = G(s) or s = G71(¢),
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Ap = lim BAQ) 1 [G—l )+ G (t)ln[—F 0 ]]

tlo ¢ tlo t G7(t)

= lim asgj [1 + 1{%}] = lim a“’gj {1 + ln( Zi(s)ﬂ

1+In(2) .. In(-1n(s)) s In(l + 2)
T THE T om) AR ies

=0

by the substitution s = ¢™%, i.e., A; = 0, as stated.

Case 2. In [8], this refers to Case 6. We consider W;(U)=
min(Uy, Uy), Wo(U) = Uy - U,. It is easy to see that the c.d.f. G is given
by

G(x)=(1-1In(x))-x, 0<=x <1 asabove and
Flx)=1-01-xf, 0<x<l.

The following graph shows 10,000 simulations of V.
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The red lines (u, v) represent the lower and upper envelopes of the
copula, which are given by vy = (1-v1-u )2 (1-2In(1-v1-u))
and Vypper = @-v1-u)(1-In@-v1-u)), 0<u<1, see[8].

The subsequent graph explains our arguments for the calculation of

the coefficient Ay of upper tail dependence, which is given by

g =2 (V2 -1).

We start again with some preliminary inequalities.
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We have

P(min(U, V)= F71¢), U -V > G71(t))

or
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P(min(U, V)> F'(),U-V >G7() ., [F‘l(t) )
1-t - 201 - 1) ’

hence, by the substitution s = G™1(¢) or ¢ = G(s) as above,

A lim PAmin(. V) 2 F'0),U -V 2G()
t—>1 1-t

: ~H(Gls))
>=1- 20 - G)
=1- lln}ﬂllf—(g)(_ﬁ =2-(¥2 1) = 0.828427125...
2
i = 5 - FYG(s s =
with K(s) = [F—l(G(s)) FHa( ))] , 0..1

Note that by a Taylor expansion around the point s =1, we obtain

K(s) = (x@ - 1)2(3 - 1)2 +O((s - 1)3) and 200 -G(s) = (s - 1)2
13 T K(S) 1 _ 1Y _ 9. _
+O((s —=1)?), such that 1 i:rrim =1-(W2-1PF=2-(V2-1).
. . Gt) .
On the other side, using the fact that the graph of v = ” 1s

convex and thus the map v = 2\/G_1(t) —u is a lower tangent at the point

u=+G! (t), we get an upper bound for the tail-dependence coefficient

given by

(267 ) - 2F (o))
My <1-lim ST —1) so1 21 - Gls))
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J(s)
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with J(s) = (2\/5 —2F_1(G(s)))2, which gives an identical estimate as

above. Note that by a Taylor expansion around the point s = 1, we obtain
J(s) = («/E - 1)2(3 - 1)2 +0((s - 1)3), hence
Ay =2 (V2 -1)=0.828427125... .

The subsequent graph explains our arguments for the calculation of

the coefficient A, of lower tail dependence, which is given by A; = 0.

We start again with some preliminary inequalities.
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We have
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W(AW) < 1- (1= PP - 2(F0)- 6 @)[1 _ G*(t)]

=t-2 ,
F7'(t)
hence
. -1 -1
A; = lim P(min(U, V)< F7'(t), U-V <G7'(t)) _ lim u(A())
tLo 1-1¢ tLo t

<1-2lim (F_l (t) -G~ (t))2 -1 lim (F_I(G(S)) - 3)2 _

o 4 ple) s10 G(s)- F71(G(s))

Note that by a Taylor expansion of F -1 (t) around the point ¢ = 0, we get

F7l() = é + O(t3 ), hence (F_1 (G(s)) - 5)2 =~ (@ - sf and thus
-]
L(FGE)-sP (PG -s? 2
Gs)- FH(Gs))

(
Gb) (i (a(s) E s)f

2

_ 2s 2

2

. . 2 .. .

with lim| 1 — = 0. This implies A; = 0, as stated.
Sw( lnisij P L
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