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Abstract 

We investigate the tail-dependence behaviour of some new types of 

copula models, published recently in [8]. 

1. Introduction 

There are many approaches to copula modelling in the literature, cf., 

e.g., the References below. Here we consider the following general 

approach: let { }
N∈= kkUU  be a sequence of independent standard 

random variables, i.e., each kU  has a continuous uniform distribution 

over the interval [ ].1,0  Let further ,...,,1 nTT  N∈n  be real continuous 

functions over N
R  and ( )Uii TV =  for ni ...,,1=  with a continuous 
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uniform distribution over [ ]1,0  each. Then ( )nVV ...,,1=V  is a 

representative of an n -dimensional copula. 

Note that if ( )Uii TW =  is not directly uniformly distributed then 

( )iii WFV =  is so if iF  denotes the c.d.f. of .iW  

Of particular interest especially for financial markets or risk 

management is the tail dependence of copulas w.r.t. to joint extremes, 

see, e.g., [1] or [3]. While in [5], [6] and [7], the topic of tail dependence 

was explicitly treated for dependence-of-unity copulas, it was not 

addressed for the new approach in [8] yet, which we shall catch up on 

here. For the sake of simplicity, we restrict ourselves to the two-

dimensional case 2=n  with ( ( ) ( ))UU 21 , WW  representing the pre-copula 

construction. The simplest definition of the coefficient Uλ  of upper and 

Lλ  of lower tail dependence is 
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where F  denotes the c.d.f. of ( )U1W  and G  the c.d.f. of ( ),2 UW  see, e.g., 

([5], Def. 7.36, p. 247). 

2. Particular Cases 

Case 1. In [8], this refers to Case 2. Let ( ) ,211 UUW +=U  

( ) .212 UUW ⋅=U  It is easy to see that the c.d.f. G  is given by 

( ) ( )( ) 10,ln1 ≤<⋅−= xxxxG  and 
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The first formula follows from the observation that ( )( )U2lnW−  

represents the sum of two independent standard exponentially 

distributed random variables, hence is gamma-distributed. The inverse 

function 1−G  is not available in elementary form, but 1−F  can easily be 

calculated as 
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The following graph shows 000,10  simulations of .V  
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The red lines ( )vu,  represent the lower and upper envelopes of the 

copula, which are given by 

( )( ( ))
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see [8]. 

In what follows we denote by µ  the two-dimensional Lebesgue 

measure. The subsequent graph explains our arguments for the 

calculation of the coefficient Uλ  of upper tail dependence, which is given 

by .1=λU  We use some preliminary inequalities. 

 

For ,10 ≤≤ t  we have 
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which, by the substitution ( )tGs 1−=  or ( ),sGt =  gives 
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hence ,1=λU  as stated. Note that by a Taylor expansion around the 

point ,1=s  we have ( ) ( ) (( ) ),11
2

1
1

32 −+−−= sssG O  hence 
( )( )

( )21

12

s

sG

−

−
 

(( ).11 −+= sO  

The subsequent graph explains our arguments for the calculation of 

the coefficient Lλ  of lower tail dependence, which is given by .0=λL  
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Here we use the inequality 
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where ( )( ) ( ( ) ( ))., 11 tGVUtFVUPtA −− ≤⋅≤+=µ  

Now, since ( ) ttF 21 ≈−  for 0↓t  and ( ) ,0lim
0

=
↓

sG
s

 with the 

substitution ( )sGt =  or ( ),1 tGs −=  
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by the substitution ,zes −=  i.e., ,0=λL  as stated. 

Case 2. In [8], this refers to Case 6. We consider ( ) =U1W  

( ),,min 21 UU  ( ) .212 UUW ⋅=U  It is easy to see that the c.d.f. G  is given 

by 

( ) ( )( ) 10,ln1 ≤<⋅−= xxxxG  as above and 

( ) ( ) .10,11
2 ≤≤−−= xxxF  

The following graph shows 000,10  simulations of .V  
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The red lines ( )vu,  represent the lower and upper envelopes of the 

copula, which are given by ( ) ( ( ))uuvlower −−−⋅−−= 11ln2111
2

 

and ( ) ⋅−−= uvupper 11 ( ( )),11ln1 u−−−  ,10 << u  see [8]. 

The subsequent graph explains our arguments for the calculation of 

the coefficient Uλ  of upper tail dependence, which is given by 

( ).122 −⋅=λU  

We start again with some preliminary inequalities. 
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We have 
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hence, by the substitution ( )tGs 1−=  or ( )sGt =  as above, 
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Note that by a Taylor expansion around the point ,1=s  we obtain 

( ) ( ) ( ) (( ) )322
1112 −+−−= sssK O  and ( )( ) ( )2112 −=− ssG  

(( ) ),1
3−+ sO  such that 
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On the other side, using the fact that the graph of 
( )

u

tG
v

1−
=  is 

convex and thus the map ( ) utGv −= −12  is a lower tangent at the point 

( ),1 tGu −=  we get an upper bound for the tail-dependence coefficient 

given by 
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with ( ) ( ( ( ))) ,22
21 sGFssJ −−=  which gives an identical estimate as 

above. Note that by a Taylor expansion around the point ,1=s  we obtain 

( ) ( ) ( ) (( ) ),1112
322 −+−−= sssJ O  hence 

( ) ....828427125.0122 =−⋅=λU  

The subsequent graph explains our arguments for the calculation of 

the coefficient Lλ  of lower tail dependence, which is given by .0=λL  

We start again with some preliminary inequalities. 

 

We have 
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Note that by a Taylor expansion of ( )tF 1−  around the point ,0=t  we get 
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 This implies ,0=λL  as stated. 
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