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Abstract We investigate the tail-dependence behaviour of some new types of copula models, 

published recently in [8]. 

 
1. Introduction. There are many approaches to copula modelling in the literature, cf. e.g. the 

References below. Here we consider the following general approach: let { } Î
=

k k
UU  be a 

sequence of independent standard random variables, i.e. each kU  has a continuous uniform 

distribution over the interval [ ]0,1 .  Let further 1, , , n Î nT T  be real continuous functions 

over   and ( )=i iV T U  for 1, ,= i n  with a continuous uniform distribution over [ ]0,1  

each. Then ( )1, ,=  nV VV  is a representative of an n-dimensional copula. 

Note that if ( )=i iW T U  is not directly uniformly distributed then ( )=i i iV F W  is so if iF  

denotes the c.d.f. of .iW  
 

Of particular interest especially for financial markets or risk management is the tail 

dependence of copulas w.r.t. to joint extremes, see e.g. [1] or [3]. While in [5], [6] and [7], the 

topic of tail dependence was explicitly treated for dependence-of-unity copulas, it was not 

addressed for the new approach in [8] yet, which we shall catch up on here. For the sake of 

simplicity, we restrict ourselves to the two-dimensional case 2n=  with ( )1 2( ), ( )W WU U  

representing the pre-copula construction. The simplest definition of the coefficient Ul  of 

upper and Ll  of lower tail dependence is 
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where F denotes the c.d.f. of 1( )W U  and G the c.d.f. of  2 ( ),W U see e.g. [5], Def. 7.36, p.247. 
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2. Particular Cases.  
 
Case 1.  In [8], this refers to Case 2. Let 1 1 2 2 1 2( ) , ( ) .= + = ⋅W U U W U UU U  It is easy to see 

that the c.d.f. G is given by  
 

( )
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2
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The first formula follows from the observation that ( )2ln ( )- W U  represents the sum of two 

independent standard exponentally distributed random variables, hence is gamma-distributed.  

The inverse function 1G-  is not available in elementary form, but 1F-  can easily be 

calculated as 

1
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2

t t
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The following graph shows 10.000 simulations of V. 

 

 
 
The red lines ( , )u v  represent the lower and upper envelopes of the copula, which are given by 
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 see [8]. 

 
In what follows we denote by m  the two-dimensional Lebesgue measure. The subsequent 

graph explains our arguments for the calculation of the coefficient Ul  of upper tail 

dependence, which is given by 1.Ul =  We use some preliminary inequalities.  

 
For 0 1,t£ £  we have 
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which, by the substitution 1( )s G t-=  or ( ),t G s=  gives 
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hence 1,Ul =  as stated. Note that by a Taylor expansion around the point 1,s=  we have 

( )2 31
( ) 1 ( 1) ( 1) ,
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The subsequent graph explains our arguments for the calculation of the coefficient Ll  of 

lower tail dependence, which is given by 0.Ll =  

 
 
Here we use the inequality  
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where ( ) ( )1 1( ) ( ), ( ) .A t P U V F t U V G tm - -= + £ ⋅ £  

 

Now, since 1( ) 2F t t- »  for 0t   and 
0
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s
G s


=  with the substitution ( )t G s=  or 

1( ),s G t-=  
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by the substitution ,zs e-=  i.e. 0,Ll =  as stated. 
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Case 2. In [12], this refers to Case 6. We consider ( )1 1 2 2 1 2( ) min , , ( ) .= = ⋅W U U W U UU U  It 

is easy to see that the c.d.f. G is given by  
 

( )
2

( ) 1 ln( ) , 0 1 as above and

( ) 1 (1 ) , 0 1.

G x x x x
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The following graph shows 10.000 simulations of V. 

 

 
 
The red lines ( , )u v  represent the lower and upper envelopes of the copula, which are given by 
 

( ) ( )( )2

1 1 1 2ln 1 1= - - ⋅ - - -lowerv u u  and ( ) ( )( )1 1 1 ln 1 1 ,= - - ⋅ - - -upperv u u   

0 1,u< < see [8].  
 
The subsequent graph explains our arguments for the calculation of the coefficient Ul  of 

upper tail dependence, which is given by ( )2 2 1 .Ul = ⋅ -  

We start again with some preliminary inequalitites. 
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hence, by the substitution 1( )s G t-=  or ( )t G s=  as above, 
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Note that by a Taylor expansion around the point 1,s=  we obtain 
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On the other side, using the fact that the graph of  
1( )G t

v
u

-

=  is convex and thus the 

map 12 ( )v G t u-= -  is a lower tangent at the point 1( ),u G t-=  we get an upper bound for 

the tail-dependence coefficient given by  
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with ( )2
1( ) 2 2 ( ( )) ,J s s F G s-= - which gives an identical estimate as above. Note that by a 

Taylor expansion around the point 1,s=  we obtain ( ) ( )
2

2 3( ) 2 1 ( 1) ( 1) ,J s s s= - - + -   

hence ( )2 2 1 0.828427125Ul = ⋅ - =  

 
The subsequent graph explains our arguments for the calculation of the coefficient Ll  of 

lower tail dependence, which is given by 0.Ll =  

We start again with some preliminary inequalitites. 
 

 
 
We have 
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Note that by a Taylor expansion of 1( )F t-  around the point 0,t =  we get  
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Case 3. Here we consider a new case  ( )1 1 2 2 1 2( ) , ( ) max , .W U U W U U= + =U U  It is easy to 

see (cf. Case 1) that the corresponding c.d.f.’s  are given by  
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The following graph shows 10.000 simulations of V. 
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The red lines ( , )u v  represent the sharp lower and upper envelopes of the copula, which are 
given by 
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The lower bound is reached if 1V  and 2V  are close to each other, while the upper bound is 

reached if  one of  1V  or 2V  is close to zero. 

The subsequent graph explains our arguments for the calculation of the coefficient Ul  of 

upper tail dependence, which is given by 0.Ul =  

 
We start again with some preliminary inequalitites. 
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or, by a Taylor expansion around the point 1,t =   
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The subsequent graph explains our arguments for the calculation of the coefficient Ul  of 

upper tail dependence, which is given by ( )2 2 1 0,828427...Ul = - = . 
 

We start again with some preliminary inequalitites. 
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