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Abstract We consider a portfolio of n risks X,,---, X

n’

n €N, which are assumed to be independent and
identically distributed with a finite expectation p = E(X,) and finite variance o” =Var(X,), k=1,---,n.

Moreover, we assume that only a certain random portion p of the contracts will be affected during the
insurance period, and that multiple claims are not possible. In order to model this aspect we assume that
J,,---,J,, n€N, are additional conditionally independent binomially distributed random variables with a

random success parameter p = P (J ;= 1) =1 —P(J P = 0), k=1,---,n, being Beta-distributed with shape

parameters o > 0and (>0 which are also independent of the risks under consideration.

1. Introduction We investigate a portfolio of n risks X,,---, X

nd

n €N, being independent and identically
distributed as X with a finite expectation = E(X) and finite variance o =Var(X). Additionally, we
assume that only a certain random portion p of the contracts will be affected during the insurance period, and
that multiple claims are not possible. In order to model this aspect we assume that J,,---,J,, n €N, are
additional conditionally independent binomially distributed random variables with a random success
parameter p=P(J, =1)=1—P(J, =0), k=1,---,n, being Beta-distributed with shape parameters
a>0and (>0 which are also independent of the risks under consideration. This model has been
investigated recently in Pfeifer [5] (2022). We have, as is well-known,

Y and Var(p) = o

E(p):aJrﬂ (a+B) (a+3+1)

(cf. Johnson et al. [1], Chapter 3, p. 217). Then the total aggregate risk S is given by §, = ZJ .- X,. Note

k=1

N n
that the distribution of S, is stochastically equivalent to the distribution of S, = ZX , where N, = ZJ i
k=1 k=1

follows a Beta-Binomial distribution with parameters
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Y and Var(N,)= naf-la+f+n)

a+ _(a+ﬁ)2(a+ﬁ+1):n'Var(p)'(aJrﬂJrn)

E(N,)=

(cf. Johnson et al. [2], Chapter 6.2.2, p. 253). Note that for all € N, N, and the {X f }keN are independent. It

follows that we have

E(S,)=E(N)-p=n-E(p)-p and

Var(S,)= E(N)-Var(X)+Var(N)- {E()()}2 =n-E(p)-o’ +n-Var(p)-(a+B+n) p’°

Clearly, these moment relations follow from Wald’s well-known formula and the Blackwell-Girshick-
formula in collective risk theory (cf. Klugman [3], relation (9.9), p.143, or Rotar [6], Chapter 4, Propositions
1 and 2, p.200).

2.Approximations If E (Nn) is large enough and Var(Nn) is small enough it seems reasonable to

approximate the distribution of S, by a normal law (cf. Rotar [6], Chapter 4.1.1, p. 228). Note, however, that
condition (4.1.6) or (4.1.7) of Theorem 12 in Rotar [6], p. 231 is not satisfied if « and 3 are constant since

in this case,

lim —V“r(N"):hm\/ brlatfvn) _
=\ (@t B)-(at 51D

n—00 E (Nn )

Alternatively, we may assume « and ( to be dependent on 7, say v =yn and 3= én with fixed 7,6 > 0.

in this case,

limE(N,)=o00 and

n—oQo

lim Var(N,) _ \/ B-lat+f+n) §-(y+6+1)
< E(N,) @Bt B4y

We can observe that for large values of n the corresponding Beta-Binomial distribution is close to the
binomial distribution with success parameter p :%. Likewise, the corresponding Beta-Binomial
8
distribution can be approximated by a normal law itself. We present some graphs for a visualization. The red
line in Fig. 1 to Fig. 4 represents the counting density of the Beta-Binomial distribution, the blue line
represents the counting density of the Binomial distribution. Fig. 5 to Fig. 8 show Quantile-Quantile-Plots for
100 simulated Beta-Binomial distributions each, cf. Pfeifer [4] (2019). T denotes the corresponding

correlation based test statistic.
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Since the Binomial distribution fulfils the conditions of Theorem 12 in Rotar [6], p. 231, and the
approximation of the Beta-Binomial distribution by a normal law under the conditions discussed above seems

acceptable it seems reasonable to approximate the distribution of the total aggregate risk S, itself by a

normal law.

3 A Case Study In this section, we consider a portfolio with » =50.000 insurance contracts and assume for

simplicity that the sums insured follow a lognormal distribution with expectation p, >0 and standard
deviation oy > 0. further, we assume that the individual loss realized is a beta distributed multiple of the

individual sum insured, independent of the sums insured. The corresponding beta parameters are «g, and

. e expectation of the loss factor then is w, .= —_ % and the standard deviation is
ﬂSI Th p f h l f h lu)‘actor E p
‘ ag + By
T fretor = 0451 Py while the expectation of the realized loss is =i, -fis; and its
(O‘s1 +6sz) (O‘s1 + By +1)

standard deviation o = \/<0§, + “él)'(ff;acmr + ,u;m,)— ©*. Fig. 9 to Fig. 13 show Quantile-Quantile-Plots for
100 simulated aggregated losses, cf. Pfeifer [4] (2019).

Parameters | « BIEWN,) | ag | By | Fucor | O fuctor sy Ty p o
Fig. 9 | 70 2.730 1.250 21398 | 0,5% | 0,35% | 100.000 | 10.000 500 | 357,50
Fig. 10 | 90 4410 1.000 21198 | 1,0% | 0,70% | 100.000 | 10.000 | 1.000 | 712,36
Fig. 11 | 70 2.730 1.250 21398 | 0,5% | 0,35% | 100.000 | 20.000 500 | 372,86
2
2

Fig. 12 | 70 2.263,3 1.500 198 | 1,0% | 0,70% | 100.000 | 20.000 | 1.000 | 743,13

Fig. 13 | 70 2.263,3 1.500 198 | 1,0% | 0,70% | 100.000 | 50.000 | 1.000 | 930,41
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