On an approximation of the total aggregate risk distribution in a modified collective risk model

Dietmar Pfeifer Institut für Mathematik Fakultät V Carl-von-Ossietzky Universität Oldenburg

August 2024

Key words: collective risk model, Beta-binomial distribution, normal approximation

2020 Mathematics Subject Classification: 91B05, 62P05

Abstract We consider a portfolio of *n* risks X_1, \dots, X_n , $n \in \mathbb{N}$, which are assumed to be independent and identically distributed with a finite expectation $\mu = E(X_k)$ and finite variance $\sigma^2 = Var(X_k)$, $k = 1, \dots, n$. Moreover, we assume that only a certain random portion *p* of the contracts will be affected during the insurance period, and that multiple claims are not possible. In order to model this aspect we assume that J_1, \dots, J_n , $n \in \mathbb{N}$, are additional conditionally independent binomially distributed random variables with a random success parameter $p = P(J_k = 1) = 1 - P(J_k = 0)$, $k = 1, \dots, n$, being Beta-distributed with shape parameters $\alpha > 0$ and $\beta > 0$ which are also independent of the risks under consideration.

1. Introduction We investigate a portfolio of *n* risks X_1, \dots, X_n , $n \in \mathbb{N}$, being independent and identically distributed as *X* with a finite expectation $\mu = E(X)$ and finite variance $\sigma^2 = Var(X)$. Additionally, we assume that only a certain random portion *p* of the contracts will be affected during the insurance period, and that multiple claims are not possible. In order to model this aspect we assume that J_1, \dots, J_n , $n \in \mathbb{N}$, are additional conditionally independent binomially distributed random variables with a random success parameter $p = P(J_k = 1) = 1 - P(J_k = 0)$, $k = 1, \dots, n$, being Beta-distributed with shape parameters $\alpha > 0$ and $\beta > 0$ which are also independent of the risks under consideration. This model has been investigated recently in Pfeifer [5] (2022). We have, as is well-known,

$$E(p) = \frac{\alpha}{\alpha + \beta}$$
 and $Var(p) = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}$

(cf. Johnson et al. [1], Chapter 3, p. 217). Then the total aggregate risk S_n is given by $S_n = \sum_{k=1}^n J_k \cdot X_k$. Note that the distribution of S_n is stochastically equivalent to the distribution of $\tilde{S}_N = \sum_{k=1}^N X_k$ where $N_n = \sum_{k=1}^n J_k$ follows a Beta-Binomial distribution with parameters

D. Pfeifer (🖂)

Institut für Mathematik, Schwerpunkt Versicherungs- und Finanzmathematik, Carl von Ossietzky Universität Oldenburg, Oldenburg, Deutschland

E-Mail: dietmar.pfeifer@uni-oldenburg.de

$$E(N_n) = \frac{n\alpha}{\alpha + \beta} \text{ and } Var(N_n) = \frac{n\alpha\beta \cdot (\alpha + \beta + n)}{(\alpha + \beta)^2 (\alpha + \beta + 1)} = n \cdot Var(p) \cdot (\alpha + \beta + n)$$

(cf. Johnson et al. [2], Chapter 6.2.2, p. 253). Note that for all $n \in \mathbb{N}$, N_n and the $\{X_k\}_{k \in \mathbb{N}}$ are independent. It follows that we have

$$E(S_n) = E(N) \cdot \mu = n \cdot E(p) \cdot \mu \text{ and}$$

$$Var(S_n) = E(N) \cdot Var(X) + Var(N) \cdot \{E(X)\}^2 = n \cdot E(p) \cdot \sigma^2 + n \cdot Var(p) \cdot (\alpha + \beta + n) \cdot \mu^2$$

Clearly, these moment relations follow from Wald's well-known formula and the Blackwell-Girshick-formula in collective risk theory (cf. Klugman [3], relation (9.9), p.143, or Rotar [6], Chapter 4, Propositions 1 and 2, p.200).

2.Approximations If $E(N_n)$ is large enough and $Var(N_n)$ is small enough it seems reasonable to approximate the distribution of S_n by a normal law (cf. Rotar [6], Chapter 4.1.1, p. 228). Note, however, that condition (4.1.6) or (4.1.7) of Theorem 12 in Rotar [6], p. 231 is not satisfied if α and β are constant since in this case,

$$\lim_{n\to\infty}\sqrt{\frac{Var(N_n)}{E(N_n)}} = \lim_{n\to\infty}\sqrt{\frac{\beta\cdot(\alpha+\beta+n)}{(\alpha+\beta)\cdot(\alpha+\beta+1)}} = \infty.$$

Alternatively, we may assume α and β to be dependent on n, say $\alpha = \gamma n$ and $\beta = \delta n$ with fixed $\gamma, \delta > 0$. in this case,

$$\lim_{n \to \infty} E(N_n) = \infty \text{ and}$$
$$\lim_{n \to \infty} \sqrt{\frac{Var(N_n)}{E(N_n)}} = \lim_{n \to \infty} \sqrt{\frac{\beta \cdot (\alpha + \beta + n)}{(\alpha + \beta) \cdot (\alpha + \beta + 1)}} = \frac{\sqrt{\delta \cdot (\gamma + \delta + 1)}}{\gamma + \delta}.$$

We can observe that for large values of *n* the corresponding Beta-Binomial distribution is close to the binomial distribution with success parameter $p = \frac{\gamma}{\gamma + \delta}$. Likewise, the corresponding Beta-Binomial distribution can be approximated by a normal law itself. We present some graphs for a visualization. The red line in Fig. 1 to Fig. 4 represents the counting density of the Beta-Binomial distribution, the blue line represents the counting density of the Binomial distribution. Fig. 5 to Fig. 8 show Quantile-Quantile-Plots for 100 simulated Beta-Binomial distributions each, cf. Pfeifer [4] (2019). *T* denotes the corresponding correlation based test statistic.

T = 5,6477, p = 87,07%

T = 5,5583, p = 82,89%

Since the Binomial distribution fulfils the conditions of Theorem 12 in Rotar [6], p. 231, and the approximation of the Beta-Binomial distribution by a normal law under the conditions discussed above seems acceptable it seems reasonable to approximate the distribution of the total aggregate risk S_n itself by a normal law.

3 A Case Study In this section, we consider a portfolio with n = 50.000 insurance contracts and assume for simplicity that the sums insured follow a lognormal distribution with expectation $\mu_{SI} > 0$ and standard deviation $\sigma_{SI} > 0$. further, we assume that the individual loss realized is a beta distributed multiple of the individual sum insured, independent of the sums insured. The corresponding beta parameters are α_{SI} and

 β_{SI} . The expectation of the loss factor then is $\mu_{factor} = E(p) = \frac{\alpha_{SI}}{\alpha_{SI} + \beta_{SI}}$ and the standard deviation is

 $\sigma_{factor} = \sqrt{\frac{\alpha_{SI} \cdot \beta_{SI}}{\left(\alpha_{SI} + \beta_{SI}\right)^2 \left(\alpha_{SI} + \beta_{SI} + 1\right)}} \quad \text{while the expectation of the realized loss is } \mu = \mu_{factor} \cdot \mu_{SI} \text{ and its}$

standard deviation $\sigma = \sqrt{\left(\sigma_{SI}^2 + \mu_{SI}^2\right) \cdot \left(\sigma_{factor}^2 + \mu_{factor}^2\right) - \mu^2}$. Fig. 9 to Fig. 13 show Quantile-Quantile-Plots for 100 simulated aggregated losses, cf. Pfeifer [4] (2019).

Parameters	α	eta	$E(N_n)$	$\alpha_{\rm SI}$	$\beta_{\rm SI}$	$\mu_{\it factor}$	$\sigma_{\it factor}$	$\mu_{\scriptscriptstyle SI}$	$\sigma_{\scriptscriptstyle S\!I}$	μ	σ
Fig. 9	70	2.730	1.250	2	398	0,5%	0,35%	100.000	10.000	500	357,50
Fig. 10	90	4.410	1.000	2	198	1,0%	0,70%	100.000	10.000	1.000	712,36
Fig. 11	70	2.730	1.250	2	398	0,5%	0,35%	100.000	20.000	500	372,86
Fig. 12	70	2.263,3	1.500	2	198	1,0%	0,70%	100.000	20.000	1.000	743,13
Fig. 13	70	2.263,3	1.500	2	198	1,0%	0,70%	100.000	50.000	1.000	930,41

Fig. 9 T = 5,2584, p = 63,54%

Fig. 10 T = 6,4951, p = 99,77%

T = 5,5421, p = 82,05%

Fig. 12 T = 5,0173, p = 44,47%

Fig. 13 T = 4,5438, p = 13,74%

References

- Johnson, N.L., Kotz, S. and Balakrishnan N.: Continuous Univariate Distributions, Vol. 2. 2nd Ed., Wiley, N.Y. (1995).
- [2] Johnson, N.L., Kemp, A.W. and Kotz, S.: Univariate Discrete Distributions. Wiley, N.Y. (2005).
- [3] Klugman, S.A., Panjer, H.H. and Willmot, G.E.: Loss Models. From Data to Decisions. 4th Ed., Wiley, N.Y. (2012).
- [4] Pfeifer, D.: Modellvalidierung mit Hilfe von Quantil-Quantil-Plots unter Solvency II. ZVersWiss (2019), 108: 307 325. <u>https://doi.org/10.1007/s12297-019-00451-y</u> Erratum ad [4], ZVersWiss (2020), 109:151 151. <u>https://doi.org/10.1007/s12297-020-00465-x</u>
- [5] Pfeifer, D.: Ein neuer Ansatz zur Frequenzmodellierung imVersicherungswesen. Z. Vers. Wiss. (2022), 111: 465 - 472, <u>https://doi.org/10.1007/s12297-022-00539-y</u> Erratum ad [5], ZVersWiss (2024).
- [6] Rotar, V.I.: Actuarial Models. The Mathematics of Insurance. 2nd Ed., Chapman & Hall/CRC, Boca Raton (2015).