
LIMIT LAWS FOR INTER-RECORD TIMES FROM 
NON-HOMOGENEOUS RECORD VALUES 
 
D. PFEIFER 
Rheinisch-Westfälische Technische Hochschule Aachen 
Institut für Statistik und Wirtschaftsmathematik 
Wüllnerstr. 3, D-5100 Aachen 
West Germany 
 
 
 
 
ABSTRACT 
 

Starting from  a (non-) homogeneous record value sequence from stochastically de-
creasing distributions possible limit laws for the resulting inter-record times are investigated. 
Conditions are given under which in the limit normal and Smirnov-type extreme value 
distributions are obtained. 
      
 
1. INTRODUCTION 
 
            In this paper we investigate some aspects of the non-homogeneous record process 
introduced in [3] which arises from the classical case (see [1], [5]) by possible changes of the 
underlying distributions after every record event. Let { }00, ; , 1nkX X n k ³  be a family of 

independent random variables (r.v.’s) on  a probability space ( ), , PW

.

 with  being the 

cumulative distribution function (c.d.f) of the  The sequence 
nF

, 0nkX n ³ { }; 0nnD ³  of inter-

record times is recursively defined by 
 

(1.1) { }0 1 1,0, min ;
nn n kk X X+ +D = D = > ,n D  

            with ( ) ,min .nX ¥Æ º º¥  

 
The sequence { }; 0nR n ³  of  record values is defined by 

 
(1.2)  , nn nR X D=

 
(for measurability and other structural properties see [3]). 
 
             It is well known that in the continuous homogeneous case, i.e. all  where F is 

a fixed continouos c.d.f., lo  is asymptotically normally distributed ([1], [5]). In this paper 

we investigate limit laws for  in the case of distributions of the form 

nF Fº
g nD

log nD
 
(1.3)  1 (1 ) n

nF F l= - -
 
where F again is a fixed continuous c.d.f. and {  is a non-decreasing sequence of 

positive real numbers. As has been pointed out in [3], this corresponds to a shock model with 
}; 0n nl ³
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increasing safety since in this case, the sequence of inter-record times will be stochastically 
increasing. (Note that the homogeneous case is obtained if all  1.)nl º
 
2. MAIN RESULTS 
 
            Let us for the moment assume that { }; 0nF n ³

),¥
 only is a non-decreasing sequence of 

c.d.f.’s with common right end  (which may be  and that all  are continuous at  

Then the following statement holds. 

x nF .x

 
THEOREM 2.1. With ( )log 1 , 0,n nG F=- - ³n  we have 

 

(2.1) 
( )1log

limsup 1 . .
log

n n n

n

G R
a s

n
-

¥

D -
=  

 
PROOF. We will first show that (2.1) holds conditionally given the record sequence 

 which is non-degenerate under the conditions above (see [3]). But then, { ; 0nR n ³ }
{ };n nD ³ 0  is a conditionally independent sequence given { };nR n ³ 0  with 

 

(2.2) { }( ) ( )1; 0 . ., 1, 0.m
n k n nP m R k F R a s n m-D > ³ = ³ ³

. .;

 

 
In order to show the conditional version of (2.1), it is sufficient to prove that 

 the desired result will then follow by [5], Lemma 2. But for all n, ( )( )1
1

1 n n
n

F R a s
¥

-
=

- <¥å
 

(2.3) ( ) ( )21
1 ( ) ( ) 1 ( ) ,

2n n n

s

F t P dt F s s 
¥

- £ -ò ,Î  

 
where  denotes the probability measure corresponding to  Also, for  nP .nF 1,n ³
 

(2.4) 
( )

1

,

1
( ) ( ),

1 ( )
nR

n
nx

g s P dy x
F y

-

-¥

= Î
-ò  

 
is a -density of nP nR  by [3], (3.2), hence by (2.3), 

 

(2.5) ( )( ) ( )( ) nF s-1 1
1 ( ) 1

1 ( ) 1 ( ) ( )
1 ( ) 2

n nR Rn
n n n

ns t

F t
E F R P dt P ds P ds

F s
- -

>

-
- = £

-òò ò  

            ( )( )1

1
1 ,

2 n nE F R n-= - ³1.

}

 

 
By the monotonicity of {  and repeated use of (2.5) we thus have ; 0nF n ³
 

(2.6) ( )( )1

1
1 ,

2n n n
E F R n-- £ 1,³  hence 
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(2.7)  implying  ( )( 1
1

1 1n n
n

E F R
¥

-
=

-å ) ,£ .( )( )1
1

1 .n n
n

F R a s
¥

-
=

- <¥å
 
which leads to the conditional version of (2.1). The unconditional version of (2.1) now us 

obtained by taking expectations on both sides. □ 
 
            For the remainder of this section, we will assume that the underlying c.d.f.’s are of the 
form (1.3). From Theorem 2.1, the following limit law can be derived. 
 

COROLLARY 2.2. If  
2

0

1
,

k kl

¥

=

=¥å  then  is asymptotically normally distributed with log nD

 

(2.8) 

1

0

1

2
0

1 1
log

(0,1).
1

n

n
kn k

n

k k




l l

l

-

=

-

=

D -


å

å
 

 

If 2
2

0

1
,

k k

s
l

¥

=

= <å ¥ 2 then there exists a random variable X with zero mean and variance s  

such that 
 

(2.9) 
1

0

1 1
log . .

n

n
kn k

X a s
l l

-

=

D - å  

 
PROOF. Since by continuity, the distribution of  only depends on  F may 

assumed to be the c.d.f. of an exponentially distributed r.v. with unit mean (that is,  is the 

c.d.f. of an exponentially distributed r.v. with mean 

nD 1, , ,nl l
Fn

1

nl
). But in this case, { }; 0³n

( )

R n  

possesses independent exponentially distributed increments { }  with ; 0nZ n ³
1

nE Z
nl

=  by 

[3], hence 
 

(2.10) 

1

1
0

1

2
0

1

(0,1)
1

n

n
k k

n

k k

R



l

l

-

-
=

-

=

-


å

å
 if 

2
0

,
k kl=

=¥å 1¥

 and 

 
 

(2.11) 
1

1
0

1n

n
k k

R
l

-

-
=

-å  converges a.s. if 
2

0

1
.

k kl

¥

=

<¥å  

 
While (2.11) is a simple consequence of Kolmogorov’s theorem, (2.10) is a consequence of 
the Ljapunov type condition 
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(2.12) 

4
1 1

4
0 0

2 2
1 1

2 2
0 0

1 1

9 0
1 1

n n

k
k k k k

n n

k kk k

E Z
l l

l l

- -

= =

- -

= =

æ ö÷ç ÷-ç ÷ç ÷çè ø
= 

æ ö æ ö÷ ÷ç ç÷ ÷ç ç÷ ÷ç ç÷ ÷÷ ÷ç çè ø è ø

å å

å å
 for n  .¥

 
Since in the case of exponential distributions, ( )( ) log 1 ( ) , 0,n n nG x F x x xl=- - = ³  we 

have 
 

(2.13) 
( )1

1

log1 log
log ,

log
n n n

n n
n n

G Rn
R

nl l
-

-

D -
D - = ⋅  

 
hence (2.8) and (2.9) follow from (2.10) and (2.11), resp. applying Theorem 2.1. 
 
It should be noted that in either case  
 

(2.14) ( )
1

0

1
log

2

n

n n n
k k

n
E C l

l

-

=

æ ö÷çD = - + ÷ç ÷çè øå  and 

 

(2.15) ( )
2 21

2
2

0

1
log ,

6 2

n

n n n
k k

n
Var 

p
l

l

-

=

æ ö÷ç ÷D = + + ç ÷ç ÷è ø
å  

 
where C denotes Euler’s constant. This is obvious from the proof of the corresponding 
relations in the homogeneous case ([2]) and the fact that in the general model, is 

stochastically not smaller than in the homogeneous case. □ 
nD

 
Relation (2.8) essentially says that the asymptotic behaviour of inter-record times is robust 
against small alterations in the underlying distributions (cf. [1], [5]) whereas (2.9) indicated 
that major alterations can lead to a completely different limiting distribution, which can also 
be seen by the following example. 
 
COROLLARY 2.3. Let   with  being fixed. Then n n kl = + 1k ³
 

(2.16) 
1

log log . .n kn X a s
n

D -   for n  ¥

 
Where kX  is a r.v. following a Smirnov-type extreme value distribution given by 

 

(2.17) ( )
1

, .
( 1)!t

k
s

k

e

s
P X t e ds t

k


-

¥ -
-£ = Î

-ò  

 
PROOF. Let again F be the c.d.f. of an exponentially distributed r.v. with unit mean. Then 

 the n-th order statistic of  i.i.d  r.v.’s  with c.d.f. F hence 1 ( ,nR W


- = )n 11n k+ - 1, , n kW W + -
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( ) log .nW n


-  kX  But by (2.11), 
2 1

1 1
0 0

1
log

n k

n n
j j

R n R C
k j j


- -

- -
= =

- - + -
+å 1å

k

 converges a.s., 

hence 1 logn . .R n X a s- -  Now by (2.13) and Theorem (2.1), 
1

log logn n
n

D -  

1
log log . .n kn X aD -  s

n k+
□ 

 

From Corollary 2.3, we also have 
1

log 1 . .,
log n a s

n n
D   while in the homogeneous case, 

1
log 1 . .n a sD 

1k =

n
 ([5]). 

 
Note that if  in Corollary 2.3 and F is the c.d.f. of an exponentially distributed r.v., the 
corresponding record counting process { }( ) # ; , 0nN t n R t t= £

g nD
³  is a Furry-Yule process (cf. 

[4]); in this case, the limiting distribution for lo  simply is doubly exponential. 
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